This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A077590 #24 Feb 16 2025 08:32:48 %S A077590 3,6,0,5,9,2,4,7,1,8,7,1,3,8,5,4,8,5,9,5,2,9,4,0,5,2,6,9,0,6,0,0,0,6, %T A077590 5,3,8,2,6,5,7,7,0,3,0,7,8,6,0,2,7,0,0,4,7,4,1,4,5,1,2,9,8,3,8,0,4,6, %U A077590 0,1,9,5,2,1,1,5,0,7,7,3,0,5,3,2,9,2,2,7,5,4,1,4,0,0,2,5,6,8,6,4,7 %N A077590 Decimal expansion of imaginary part of the infinite power tower of i. %D A077590 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.11, p. 449. %H A077590 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/i.html">i</a>. %H A077590 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PowerTower.html">Power Tower</a>. %e A077590 0.36059247187138548595294052690600065382657703078602700474145129838046019521150773... %p A077590 evalf(Im(2*I*LambertW(-I*Pi/2)/Pi), 139); # _Alois P. Heinz_, Dec 12 2023 %t A077590 Prepend@@RealDigits[Im[ -ProductLog[ -Log[I]]/Log[I]], 10, 150] %o A077590 (PARI) z=(1+I)/2;e=.1^default(realprecision);until(e>abs(z-z-=(z-I^z)/(1-I^(z+1)*Pi/2)),);digits(imag(z)\e) \\ _M. F. Hasler_, May 17 2018 %Y A077590 Cf. A049006, A077589 (real part). %K A077590 nonn,cons,nice %O A077590 0,1 %A A077590 _Eric W. Weisstein_, Nov 07 2002