This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A077592 #49 Jun 01 2025 17:18:37 %S A077592 1,1,1,1,2,1,1,3,2,1,1,4,3,3,1,1,5,4,6,2,1,1,6,5,10,3,4,1,1,7,6,15,4, %T A077592 9,2,1,1,8,7,21,5,16,3,4,1,1,9,8,28,6,25,4,10,3,1,1,10,9,36,7,36,5,20, %U A077592 6,4,1,1,11,10,45,8,49,6,35,10,9,2,1,1,12,11,55,9,64,7,56,15,16,3,6,1 %N A077592 Table by antidiagonals of tau_k(n), the k-th Piltz function (see A007425), or n-th term of the sequence resulting from applying the inverse Möbius transform (k-1) times to the all-ones sequence. %C A077592 As an array with offset n=0, k=1, also the number of length n chains of divisors of k. - _Gus Wiseman_, Aug 04 2022 %H A077592 Alois P. Heinz, <a href="/A077592/b077592.txt">Antidiagonals n = 1..141, flattened</a> %H A077592 Adolf Piltz, <a href="https://gdz.sub.uni-goettingen.de/id/PPN271032898">Ueber das Gesetz, nach welchem die mittlere Darstellbarkeit der natürlichen Zahlen als Produkte einer gegebenen Anzahl Faktoren mit der Grösse der Zahlen wächst</a>, Doctoral Dissertation, Friedrich-Wilhelms-Universität zu Berlin, 1881; the k-th Piltz function tau_k(n) is denoted by phi(n,k) and its recurrence and Dirichlet series appear on p. 6. %H A077592 Wikipedia, <a href="https://de.wikipedia.org/wiki/Adolf_Piltz">Adolf Piltz</a>. %F A077592 If n = Product_i p_i^e_i, then T(n,k) = Product_i C(k+e_i-1, e_i). T(n,k) = Sum_d{d|n} T(n-1,d) = A077593(n,k) - A077593(n-1,k). %F A077592 Columns are multiplicative. %F A077592 Dirichlet g.f. for column k: Zeta(s)^k. - _Geoffrey Critzer_, Feb 16 2015 %F A077592 A(n,k) = A334997(k,n). - _Gus Wiseman_, Aug 04 2022 %e A077592 T(6,3) = 9 because we have: 1*1*6, 1*2*3, 1*3*2, 1*6*1, 2*1*3, 2*3*1, 3*1*2, 3*2*1, 6*1*1. - _Geoffrey Critzer_, Feb 16 2015 %e A077592 From _Gus Wiseman_, May 03 2021: (Start) %e A077592 Array begins: %e A077592 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 %e A077592 n=0: 1 1 1 1 1 1 1 1 %e A077592 n=1: 1 2 2 3 2 4 2 4 %e A077592 n=2: 1 3 3 6 3 9 3 10 %e A077592 n=3: 1 4 4 10 4 16 4 20 %e A077592 n=4: 1 5 5 15 5 25 5 35 %e A077592 n=5: 1 6 6 21 6 36 6 56 %e A077592 n=6: 1 7 7 28 7 49 7 84 %e A077592 n=7: 1 8 8 36 8 64 8 120 %e A077592 n=8: 1 9 9 45 9 81 9 165 %e A077592 The triangular form T(n,k) = A(n-k,k) gives the number of length n - k chains of divisors of k. It begins: %e A077592 1 %e A077592 1 1 %e A077592 1 2 1 %e A077592 1 3 2 1 %e A077592 1 4 3 3 1 %e A077592 1 5 4 6 2 1 %e A077592 1 6 5 10 3 4 1 %e A077592 1 7 6 15 4 9 2 1 %e A077592 1 8 7 21 5 16 3 4 1 %e A077592 1 9 8 28 6 25 4 10 3 1 %e A077592 1 10 9 36 7 36 5 20 6 4 1 %e A077592 1 11 10 45 8 49 6 35 10 9 2 1 %e A077592 (End) %p A077592 with(numtheory): %p A077592 A:= proc(n,k) option remember; `if`(k=1, 1, %p A077592 add(A(d, k-1), d=divisors(n))) %p A077592 end: %p A077592 seq(seq(A(n, 1+d-n), n=1..d), d=1..14); # _Alois P. Heinz_, Feb 25 2015 %t A077592 tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[ #, k - 1] & /@ Divisors[n]); Table[tau[n - k + 1, k], {n, 14}, {k, n, 1, -1}] // Flatten (* _Robert G. Wilson v_ *) %t A077592 tau[1, k_] := 1; tau[n_, k_] := Times @@ (Binomial[Last[#] + k - 1, k - 1] & /@ FactorInteger[n]); Table[tau[k, n - k + 1], {n, 1, 13}, {k, 1, n}] // Flatten (* _Amiram Eldar_, Sep 13 2020 *) %t A077592 Table[Length[Select[Tuples[Divisors[k],n-k],And@@Divisible@@@Partition[#,2,1]&]],{n,12},{k,1,n}] (* TRIANGLE, _Gus Wiseman_, May 03 2021 *) %t A077592 Table[Length[Select[Tuples[Divisors[k],n-1],And@@Divisible@@@Partition[#,2,1]&]],{n,6},{k,6}] (* ARRAY, _Gus Wiseman_, May 03 2021 *) %Y A077592 Rows include: A000012, A000005, A034695, A111217, A111218, A111219, A111220, A111221, A111306. %Y A077592 Columns include (with multiplicity and some offsets) A000012, A000027, A000027, A000217, A000027, A000290, A000027, A000292, A000217, A000290, A000027, A002411, A000027, A000290, A000290, A000332 etc. %Y A077592 Cf. A077593. %Y A077592 Row n = 2 of the array is A007425. %Y A077592 Row n = 3 of the array is A007426. %Y A077592 Row n = 4 of the array is A061200. %Y A077592 The diagonal n = k of the array (central column of the triangle) is A163767. %Y A077592 The transpose of the array is A334997. %Y A077592 Diagonal n = k of the array is A343939. %Y A077592 Antidiagonal sums of the array (or row sums of the triangle) are A343940. %Y A077592 A067824(n) counts strict chains of divisors starting with n. %Y A077592 A074206(n) counts strict chains of divisors from n to 1. %Y A077592 A146291(n,k) counts divisors of n with k prime factors (with multiplicity). %Y A077592 A251683(n,k) counts strict length k + 1 chains of divisors from n to 1. %Y A077592 A253249(n) counts nonempty chains of divisors of n. %Y A077592 A334996(n,k) counts strict length k chains of divisors from n to 1. %Y A077592 A337255(n,k) counts strict length k chains of divisors starting with n. %Y A077592 Cf. A018892, A051026, A062319, A143773, A176029, A327527, A337256, A343656, A343658, A343662. %K A077592 mult,nonn,tabl,look %O A077592 1,5 %A A077592 _Henry Bottomley_, Nov 08 2002 %E A077592 Typo in formula fixed by _Geoffrey Critzer_, Feb 16 2015