This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A077595 #23 Sep 02 2024 17:35:26 %S A077595 1,4,28,96,1328,4672,33472,121856,3597056,13417472,33655808,127508480, %T A077595 5829259264,22308732928,171393728512,660468137984,40831182635008, %U A077595 22589996269568,175323994652672,681560447647744,10614717931323392,289707123275726848,2261982330593738752 %N A077595 Numerator of integral from 0 to 1 of (1 + x^2)^n, in lowest terms. %F A077595 From _Fabian Pereyra_, Aug 16 2024: (Start) %F A077595 a(n) = numerator(Sum_{k=0..n} binomial(n,k)/(2*k+1)). %F A077595 E.g.f.: Sum_{x>=0} a(n)/A001803(n)*x^n/n! = Integral_{z=0..1} e^(x*(1+z^2)) dz. (End) %e A077595 For n=3 the integral is 96/35, so a(3) = 96. %t A077595 a[n_] := Numerator[Integrate[(1 + x x)^n, {x, 0, 1}]] %t A077595 a[n_] := Hypergeometric2F1[-n, 1/2, 3/2, -1] %t A077595 Table[Numerator[a[n]], {n, 0, 20}] (* _Gerry Martens_, Aug 09 2015 *) %o A077595 (PARI) {a(n) = if( n<0, 0, numerator( subst( intformal((1 + x^2)^n), x, 1)))} %Y A077595 Cf. A076729. %K A077595 nonn %O A077595 0,2 %A A077595 _Michael Somos_, Nov 06 2002