cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077631 Sum of terms in periodic part of continued fraction expansion of square root of -1 + 3^n.

This page as a plain text file.
%I A077631 #14 Sep 19 2021 08:04:38
%S A077631 2,5,10,17,56,53,160,161,346,485,1850,1457,3764,4373,13468,13121,
%T A077631 43572,39365,192642,118097,226348,354293,2646006,1062881,1871694,
%U A077631 3188645,5646564,9565937,36393508,28697813,143274092,86093441,195407590,258280325,542628818,774840977
%N A077631 Sum of terms in periodic part of continued fraction expansion of square root of -1 + 3^n.
%H A077631 Chai Wah Wu, <a href="/A077631/b077631.txt">Table of n, a(n) for n = 1..52</a>
%F A077631 From _Benoit Cloitre_, Nov 28 2002: (Start)
%F A077631 a(2n) = 2*3^n-1.
%F A077631 Conjecture: if n>1 sqrt(3^(2n+1)) < a(2n+1) < sqrt((2n+1)*3^(2n+1)). (End)
%t A077631 Table[Apply[Plus, Last[ContinuedFraction[Sqrt[ -1+3^u]]]], {u, 1, 25}]
%Y A077631 Cf. A077624-A077635.
%K A077631 nonn
%O A077631 1,1
%A A077631 _Labos Elemer_, Nov 13 2002
%E A077631 a(26)-a(36) from _Chai Wah Wu_, Sep 18 2021