cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077636 Length of periodic part of continued fraction expansion of square root of A051451(n), i.e., sqrt(lcm(1..x)) where x is a prime power from A000961.

This page as a plain text file.
%I A077636 #26 Sep 26 2021 18:47:31
%S A077636 0,1,2,2,4,2,2,2,4,8,18,14,36,38,232,268,110,280,4348,3244,32684,
%T A077636 148184,207616,9988,1946132,2154482,13319736,8971624,12345748,
%U A077636 69705504,159413696,1184191340,1183672188,23656693528,28963250020,701296434876,754283490078
%N A077636 Length of periodic part of continued fraction expansion of square root of A051451(n), i.e., sqrt(lcm(1..x)) where x is a prime power from A000961.
%F A077636 a(n) = A003285(A051451(n)). - _Michel Marcus_, Sep 30 2019
%e A077636 For A051451(10) = 360360, the periodic part is {3,2,1,132,1,2,3,1200} with 8 terms, so a(10) = 8.
%t A077636 pp = Join[{1}, Select[Range[2, 50], Mod[ #, # - EulerPhi[ # ]] == 0 &]]; Table[ Length[ Last[ ContinuedFraction[ Sqrt[ Apply[ LCM, Table[i, {i, 1, pp[[n]]}]]]]]], {n, 1, 31}]
%Y A077636 Cf. A000961, A003285, A051451.
%K A077636 nonn,more
%O A077636 1,3
%A A077636 _Labos Elemer_, Nov 13 2002
%E A077636 Edited and extended by _Robert G. Wilson v_, Nov 14 2002
%E A077636 a(31) from _Ray Chandler_, Jan 16 2009
%E A077636 a(32)-a(35) from _Chai Wah Wu_, Sep 26 2019
%E A077636 a(36) from _Chai Wah Wu_, Sep 29 2019
%E A077636 a(37) from _Chai Wah Wu_, Sep 26 2021