This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A077713 #23 Jun 23 2022 15:42:04 %S A077713 3,13,113,2113,12113,612113,50612113,1050612113,6001050612113, %T A077713 26001050612113,1026001050612113,6000001026001050612113, %U A077713 500006000001026001050612113,600500006000001026001050612113,1600500006000001026001050612113,6001600500006000001026001050612113 %N A077713 a(1) = 3; thereafter a(n) = the smallest prime of the form d0...0a(n-1), where d is a single digit, or 0 if no such prime exists. %C A077713 a(n) is the smallest prime obtained by prefixing a(n-1) with a number of the form d*10^k where d is a single digit, 0 < d < 10, and k >= 0. Conjecture: d*10^k always exists. %H A077713 Michael S. Branicky, <a href="/A077713/b077713.txt">Table of n, a(n) for n = 1..44</a> %e A077713 a(7) = 50612113: deleting 5 gives 612113 = a(6). %p A077713 a:= proc(n) option remember; local k, m, d, p; %p A077713 if n=1 then 3 else k:= a(n-1); %p A077713 for m from length(k) do %p A077713 for d to 9 do p:= k +d*10^m; %p A077713 if isprime(p) then return p fi %p A077713 od od %p A077713 fi %p A077713 end: %p A077713 seq(a(n), n=1..20); # _Alois P. Heinz_, Jan 12 2015 %o A077713 (Python) %o A077713 from sympy import isprime %o A077713 from itertools import islice %o A077713 def agen(an=3): %o A077713 while True: %o A077713 yield an %o A077713 pow10 = 10**len(str(an)) %o A077713 while True: %o A077713 found = False %o A077713 for t in range(pow10+an, 10*pow10+an, pow10): %o A077713 if isprime(t): %o A077713 an = t; found = True; break %o A077713 if found: break %o A077713 pow10 *= 10 %o A077713 print(list(islice(agen(), 16))) # _Michael S. Branicky_, Jun 23 2022 %Y A077713 Cf. A053583, A077714, A077715, A077716. %K A077713 base,nonn %O A077713 1,1 %A A077713 _Amarnath Murthy_, Nov 19 2002 %E A077713 More terms from _Ray Chandler_, Jul 23 2003 %E A077713 Changed offset to 1 by _Alois P. Heinz_, Jan 12 2015 %E A077713 Definition clarified by _N. J. A. Sloane_, Jan 19 2015