This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A077714 #22 Jun 23 2022 15:42:08 %S A077714 1,11,211,4211,34211,234211,4234211,304234211,9304234211,209304234211, %T A077714 7209304234211,37209304234211,3037209304234211,23037209304234211, %U A077714 323037209304234211,70000323037209304234211,300070000323037209304234211,600300070000323037209304234211 %N A077714 a(1) = 1; thereafter a(n) = the smallest prime of the form d0...0a(n-1), where d is a single digit, or 0 if no such prime exists. %C A077714 a(n) is the smallest prime obtained by prefixing a(n-1) with a number of the form d*10^k where d is a single digit, 0 < d < 10, and k >= 0. Conjecture: d*10^k always exists. %H A077714 Alois P. Heinz, <a href="/A077714/b077714.txt">Table of n, a(n) for n = 1..52</a> %e A077714 a(8) = 304234211; deleting 3 gives 4234211 = a(7). %p A077714 a:= proc(n) option remember; local k, m, d, p; %p A077714 if n=1 then 1 else k:= a(n-1); %p A077714 for m from length(k) do %p A077714 for d to 9 do p:= k +d*10^m; %p A077714 if isprime(p) then return p fi %p A077714 od od %p A077714 fi %p A077714 end: %p A077714 seq(a(n), n=1..20); # _Alois P. Heinz_, Jan 12 2015 %o A077714 (Python) %o A077714 from sympy import isprime %o A077714 from itertools import islice %o A077714 def agen(an=1): %o A077714 while True: %o A077714 yield an %o A077714 pow10 = 10**len(str(an)) %o A077714 while True: %o A077714 found = False %o A077714 for t in range(pow10+an, 10*pow10+an, pow10): %o A077714 if isprime(t): %o A077714 an = t; found = True; break %o A077714 if found: break %o A077714 pow10 *= 10 %o A077714 print(list(islice(agen(), 18))) # _Michael S. Branicky_, Jun 23 2022 %Y A077714 Cf. A053582, A077713, A077715, A077716. %K A077714 base,nonn %O A077714 1,2 %A A077714 _Amarnath Murthy_, Nov 19 2002 %E A077714 More terms from _Ray Chandler_, Jul 23 2003 %E A077714 Offset changed to 1 by _Alois P. Heinz_, Jan 12 2015 %E A077714 Definition clarified by _N. J. A. Sloane_, Jan 19 2015