This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A077716 #14 Jun 23 2022 15:42:06 %S A077716 19,419,5419,35419,435419,80435419,30000080435419,1030000080435419, %T A077716 91030000080435419,20091030000080435419,720091030000080435419, %U A077716 50720091030000080435419,650720091030000080435419,10650720091030000080435419,2000000010650720091030000080435419 %N A077716 a(1) = 19; thereafter a(n) = the smallest prime of the form d0...0a(n-1), where d is a single digit, or 0 if no such prime exists. %C A077716 a(n) is the smallest prime obtained by prefixing a(n-1) with a number of the form d*10^k where d is a single digit, 0 < d < 10, and k >= 0. Conjecture: d*10^k always exists. %H A077716 Michael S. Branicky, <a href="/A077716/b077716.txt">Table of n, a(n) for n = 1..51</a> %p A077716 a:= proc(n) option remember; local k, m, d, p; %p A077716 if n=1 then 19 else k:= a(n-1); %p A077716 for m from length(k) do %p A077716 for d to 9 do p:= k +d*10^m; %p A077716 if isprime(p) then return p fi %p A077716 od od %p A077716 fi %p A077716 end: %p A077716 seq(a(n), n=1..20); # _Alois P. Heinz_, Jan 12 2015 %o A077716 (Python) %o A077716 from sympy import isprime %o A077716 from itertools import islice %o A077716 def agen(an=19): %o A077716 while True: %o A077716 yield an %o A077716 pow10 = 10**len(str(an)) %o A077716 while True: %o A077716 found = False %o A077716 for t in range(pow10+an, 10*pow10+an, pow10): %o A077716 if isprime(t): %o A077716 an = t; found = True; break %o A077716 if found: break %o A077716 pow10 *= 10 %o A077716 print(list(islice(agen(), 15))) # _Michael S. Branicky_, Jun 23 2022 %Y A077716 Cf. A069612, A077713, A077714, A077715. %K A077716 base,nonn %O A077716 1,1 %A A077716 _Amarnath Murthy_, Nov 19 2002 %E A077716 More terms from _Ray Chandler_, Jul 23 2003 %E A077716 Definition clarified by _N. J. A. Sloane_, Jan 19 2015