This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A077909 #36 Apr 17 2023 15:24:59 %S A077909 1,0,0,-1,2,0,1,-4,4,-1,6,-12,9,-8,24,-33,26,-40,81,-92,92,-161,254, %T A077909 -276,345,-576,784,-897,1266,-1936,2465,-3060,4468,-6337,7990,-10588, %U A077909 15273,-20664,26568,-36449,51210,-67896,89585,-124108,170316,-225377,303278,-418532,566009,-754032,1025088 %N A077909 Expansion of 1/((1-x)*(1+x+x^2+2*x^3)). %C A077909 The absolute value of a(n) is the number of tilings of a 5 X n rectangle using n pentominoes of shapes N, U, X. |a(3)| = 1, |a(4)| = 2: %C A077909 ._____. ._______. ._______. %C A077909 | ._. | | ._. | | | | ._. | %C A077909 |_| |_| |_| |_| | | |_| |_| %C A077909 |_. ._| , | ._| ._| |_. |_. | %C A077909 | |_| | | | |_| | | |_| | | %C A077909 |_____| |_|_____| |_____|_|. - _Alois P. Heinz_, Jan 03 2014 %H A077909 Alois P. Heinz, <a href="/A077909/b077909.txt">Table of n, a(n) for n = 0..1000</a> %H A077909 Wikipedia, <a href="https://en.wikipedia.org/wiki/Pentomino">Pentomino</a> %H A077909 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,-1,2) %F A077909 a(n) = (-1)^n*sum(A128099(n-2*k, n-3*k), k=0..floor(n/3)). - _Johannes W. Meijer_, Aug 28 2013 %F A077909 G.f.: 1/(1 + x^3 - 2*x^4). - _Arkadiusz Wesolowski_, Nov 20 2013 %p A077909 a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <2|-1|0|0>>^n. %p A077909 <<1, 0, 0, -1>>)[1, 1]: %p A077909 seq(a(n), n=0..60); # _Alois P. Heinz_, Nov 20 2013 %t A077909 CoefficientList[1/(1+x^3-2*x^4) + O[x]^60, x] (* _Jean-François Alcover_, Jun 08 2015, after _Arkadiusz Wesolowski_ *) %o A077909 (PARI) Vec( 1/((1-x)*(1+x+x^2+2*x^3)) +O(x^66)) \\ _Joerg Arndt_, Aug 28 2013 %Y A077909 Partial sums of A077976. %Y A077909 Cf. A174249, A233427, A234312, A234931, A247126. %K A077909 sign,easy %O A077909 0,5 %A A077909 _N. J. A. Sloane_, Nov 17 2002