This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A078001 #29 Sep 08 2022 08:45:08 %S A078001 1,1,1,0,-2,-5,-8,-9,-5,7,28,54,73,64,1,-135,-335,-536,-602,-333,472, %T A078001 1879,3619,4887,4276,46,-9071,-22464,-35903,-40271,-22175,31824, %U A078001 126094,242539,327160,285687,1675,-609497,-1506356,-2404890,-2693927,-1476608,2145601,8461737,16254481,21901624 %N A078001 Expansion of (1-x)/(1-2*x+x^2+x^3). %H A078001 G. C. Greubel, <a href="/A078001/b078001.txt">Table of n, a(n) for n = 0..1000</a> %H A078001 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2, -1, -1). %F A078001 a(n) = Sum_{k=0..floor(n/3)} (-1)^k*binomial(n-k, 2*k). - _Vladeta Jovovic_, Feb 10 2003 %F A078001 a(0)=1, a(n+1) = a(n) - Sum_{k=0..n-2} a(k). - _Alex Ratushnyak_, May 03 2012 %F A078001 a(0)=1, a(1)=1, a(2)=1, a(n) = 2*a(n-1)-a(n-2)-a(n-3). - _Harvey P. Dale_, Nov 03 2013 %t A078001 CoefficientList[Series[(1-x)/(1-2x+x^2+x^3),{x,0,50}],x] (* or *) LinearRecurrence[{2,-1,-1},{1,1,1},50] (* _Harvey P. Dale_, Nov 03 2013 *) %o A078001 (Python) %o A078001 a = [1]*1000 %o A078001 for n in range(55): %o A078001 print(a[n], end=',') %o A078001 sum=0 %o A078001 for k in range(n-1): %o A078001 sum+=a[k] %o A078001 a[n+1] = a[n]-sum %o A078001 # from _Alex Ratushnyak_, May 03 2012 %o A078001 (PARI) Vec((1-x)/(1-2*x+x^2+x^3)+O(x^50)) \\ _Charles R Greathouse IV_, Sep 26 2012 %o A078001 (Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1-x)/( 1-2*x+x^2+x^3) )); // _G. C. Greubel_, Jun 27 2019 %o A078001 (Sage) ((1-x)/(1-2*x+x^2+x^3)).series(x, 50).coefficients(x, sparse=False) # _G. C. Greubel_, Jun 27 2019 %o A078001 (GAP) a:=[1,1,1];; for n in [4..50] do a[n]:=2*a[n-1]-a[n-2]-a[n-3]; od; a; # _G. C. Greubel_, Jun 27 2019 %Y A078001 Cf. A005251, A077856. %K A078001 sign,easy %O A078001 0,5 %A A078001 _N. J. A. Sloane_, Nov 17 2002