This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A078046 #32 Oct 21 2017 21:00:05 %S A078046 1,-2,1,2,-5,4,3,-12,13,2,-27,38,-9,-56,103,-56,-103,262,-215,-150, %T A078046 627,-692,-85,1404,-2011,522,2893,-5426,3055,5264,-13745,11536,7473, %U A078046 -32754,36817,3410,-72981,106388,-29997,-149372,285757,-166382,-268747,720886,-618521,-371112,1710519,-1957928 %N A078046 Expansion of (1-x)/(1 + x + x^2 - x^3). %C A078046 The root of the denominator [1 + x + x^2 - x^3] is the tribonacci constant. %C A078046 This is the negative of the tribonacci numbers, signature (0, 1, 0), in reverse order, starting from A001590(-1), going backwards A001590(-2), A001590(-3), ... - _Peter M. Chema_, Dec 31 2016 %H A078046 Benjamin Braun, W. K. Hough, <a href="https://arxiv.org/abs/1606.01204">Matching and Independence Complexes Related to Small Grids</a>, arXiv preprint arXiv:1606.01204 [math.CO], 2016. %H A078046 Wesley K. Hough, <a href="https://dx.doi.org/10.13023/ETD.2017.119">On Independence, Matching, and Homomorphism Complexes</a>, (2017), Theses and Dissertations--Mathematics, 42. %H A078046 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (-1,-1,1). %F A078046 G.f.: (1-x)/(1+x+x^2-x^3). %F A078046 Recurrence: a(n) = a(n-3) - a(n-2) - a(n-1) for n > 2. %F A078046 a(-1 - n) = - A001590(n). - _Michael Somos_, Jun 01 2014 %e A078046 G.f. = 1 - 2*x + x^2 + 2*x^3 - 5*x^4 + 4*x^5 + 3*x^6 - 12*x^7 + 13*x^8 + ... %t A078046 a[ n_] := If[ n >= 0, SeriesCoefficient[ (1 - x) / (1 + x + x^2 - x^3), {x, 0, n}], SeriesCoefficient [ -x^2 (1 - x) / (1 - x - x^2 - x^3),{x, 0, -n}]]; (* _Michael Somos_, Jun 01 2014 *) %o A078046 (PARI) Vec((1-x)/(1+x+x^2-x^3)+O(x^99)) \\ _Charles R Greathouse IV_, Sep 26 2012 %o A078046 (PARI) {a(n) = if( n>=0, polcoeff( (1 - x) / (1 + x + x^2 - x^3) + x * O(x^n), n), polcoeff( -x^2 * (1 - x) / (1 - x - x^2 - x^3) + x * O(x^-n), -n))}; /* _Michael Somos_, Jun 01 2014 */ %Y A078046 First differences of A057597. %Y A078046 Cf. A001590. %K A078046 sign,easy %O A078046 0,2 %A A078046 _N. J. A. Sloane_, Nov 17 2002