cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078087 Continued fraction expansion of Product_{p prime} (1 - 1/(p^2*(p+1))).

This page as a plain text file.
%I A078087 #14 Jul 05 2024 15:18:21
%S A078087 0,1,7,2,3,1,1,1,7,1,1,6,1,5,1,1,3,2,1,1,3,2,1,1,1,1,13,1,16,1,1,16,1,
%T A078087 80,1,1,1,1,7,5,1,4,1,33,3,8,1,8,1,16,11,1,2,6,1,19,1,12,5,11,1,7,5,1,
%U A078087 1,1,2,5,1,4,1,3,4,4,4,1,11,1,2,5,4,12,3,1,4,1,3,1,168,1,4,1,1
%N A078087 Continued fraction expansion of Product_{p prime} (1 - 1/(p^2*(p+1))).
%t A078087 digits = 93;
%t A078087 $MaxExtraPrecision = 4 digits;
%t A078087 terms = 4 digits;
%t A078087 LR = Join[{0, 0, 0}, LinearRecurrence[{-2, -1, 1, 1}, {-3, 4, -5, 3}, terms + 10]];
%t A078087 r[n_Integer] := LR[[n]];
%t A078087 c = Exp[NSum[r[n] PrimeZetaP[n - 1]/(n - 1), {n, 4, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]];
%t A078087 ContinuedFraction[c][[;; digits]] (* _Jean-François Alcover_, Aug 01 2019 *)
%o A078087 (PARI) contfrac(prodeulerrat(1 - 1/(p^2*(p+1)))) \\ _Amiram Eldar_, Mar 14 2021
%Y A078087 Cf. A065465 (decimal expansion).
%K A078087 nonn,cofr
%O A078087 0,3
%A A078087 _Benoit Cloitre_, Dec 02 2002
%E A078087 Offset changed by _Andrew Howroyd_, Jul 05 2024