This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A078101 #14 Sep 16 2019 04:28:50 %S A078101 1,9,187,9075,1034073,277458045,175605187731,262459366542859, %T A078101 927063711694234937,7743238400519517700687, %U A078101 152996488947929392223648350,7153582340115101979222478030231,791692010951982239786844983500390201,207426783553049237691620430245372971070275 %N A078101 1/6 of the number of ways of 3-coloring an (n-1) X n grid. %C A078101 Also the number of 3-colorings of the P_{n-1} X P_n grid graph up to permutation of the colors. - _Andrew Howroyd_, Jun 26 2017 %D A078101 Michael S. Paterson (Warwick), personal communication. %H A078101 Andrew Howroyd, <a href="/A078101/b078101.txt">Table of n, a(n) for n = 2..24</a> %F A078101 See A078099 for formula. %F A078101 a(n) = A207997(n-1, n) = A078099(n-1, n)/2. - _Andrew Howroyd_, Jun 26 2017 %t A078101 M[1] = {{1}}; %t A078101 M[m_] := M[m] = {{M[m - 1], Transpose[M[m - 1]]}, {Array[0 &, {2^(m - 2), 2^(m - 2)}], M[m - 1]}} // ArrayFlatten; W[m_] := M[m] + Transpose[M[m]]; %t A078101 T[m_, 1] := 2^(m - 1); %t A078101 T[1, n_] := 2^(n - 1); %t A078101 T[m_, n_] := MatrixPower[ W[m], n - 1] // Flatten // Total; %t A078101 a[n_] := T[n - 1, n]/2; %t A078101 Table[Print[n]; a[n], {n, 2, 15}] (* _Jean-François Alcover_, Sep 16 2019 *) %Y A078101 A diagonal of A078099 and A207997. %K A078101 nonn %O A078101 2,2 %A A078101 _N. J. A. Sloane_, Dec 05 2002 %E A078101 a(7)-a(13) from _Alois P. Heinz_, Mar 25 2009 %E A078101 Name clarified and a(14)-a(15) from _Andrew Howroyd_, Jun 26 2017