A078116 Primes of the form x^2 + 2y^2 where y<=x. Terms are listed in increasing order of x; for fixed x they're in increasing order of y.
3, 11, 17, 43, 67, 83, 89, 113, 131, 179, 139, 193, 283, 241, 331, 457, 227, 233, 257, 353, 467, 563, 617, 307, 577, 739, 379, 433, 523, 811, 1009, 443, 449, 491, 569, 641, 683, 953, 1019, 1163, 547, 601, 691, 643, 787, 1777, 761, 827, 857, 929, 971, 1307
Offset: 1
References
- Morris Kline, Mathematical Thought From Ancient to Modern Times, Oxford University Press 1972, p. 276 (Fermat prime number theorems).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..5000
Programs
-
Mathematica
Select[Flatten[Table[x^2+2y^2, {x, 0, 30}, {y, 0, x}]], PrimeQ]
-
PARI
sqplus2sq(n,m) = ct=0; for(x=1,n, for(y=1,x, s = x^2+m*y^2; if(isprime(s),ct+=1; print1(s" "); ); ); ); \\ Lists primes of the form x^2+m*y^2 with 1<=y<=x<=n.
Extensions
Edited by Dean Hickerson, Dec 12 2002
Comments