This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A078122 #10 Mar 17 2023 22:10:36 %S A078122 1,1,1,1,3,1,1,12,9,1,1,93,117,27,1,1,1632,3033,1080,81,1,1,68457, %T A078122 177507,86373,9801,243,1,1,7112055,24975171,15562314,2371761,88452, %U A078122 729,1,1,1879090014,8786827629,6734916423,1291958181,64392813,796797,2187,1 %N A078122 Infinite lower triangular matrix, M, that satisfies [M^3](i,j) = M(i+1,j+1) for all i,j>=0 where [M^n](i,j) denotes the element at row i, column j, of the n-th power of matrix M, with M(0,k)=1 and M(k,k)=1 for all k>=0. %C A078122 M also satisfies: [M^(3k)](i,j) = [M^k](i+1,j+1) for all i,j,k >=0; thus [M^(3^n)](i,j) = M(i+n,j+n) for all n >= 0. %C A078122 Conjecture: the sum of the n-th row equals the number of partitions of 3^n into powers of 3 (A078125). %H A078122 Alois P. Heinz, <a href="/A078122/b078122.txt">Rows n = 0..60, flattened</a> %F A078122 M(1, j) = A078124(j), M(j+1, j)=3^j, M(j+2, j) = A016142(j). %F A078122 M(n, k) = the coefficient of x^(3^n - 3^(n-k)) in the power series expansion of 1/Product_{j=0..n-k}(1-x^(3^j)) whenever 0<=k<n for all n>0 (conjecture). %e A078122 The cube of the matrix is the same matrix excluding the first row and column: %e A078122 [1, 0, 0, 0]^3 = [ 1, 0, 0, 0] %e A078122 [1, 1, 0, 0] [ 3, 1, 0, 0] %e A078122 [1, 3, 1, 0] [12, 9, 1, 0] %e A078122 [1,12, 9, 1] [93,117,27, 1] %p A078122 S:= proc(i, j) option remember; %p A078122 add(M(i, k)*M(k, j), k=0..i) %p A078122 end: %p A078122 M:= proc(i, j) option remember; `if`(j=0 or i=j, 1, %p A078122 add(S(i-1, k)*M(k, j-1), k=0..i-1)) %p A078122 end: %p A078122 seq(seq(M(n,k), k=0..n), n=0..10); # _Alois P. Heinz_, Feb 27 2015 %t A078122 m[i_, j_] := m[i, j]=If[j==0||i==j, 1, m3[i-1, j-1]]; m2[i_, j_] := m2[i, j]=Sum[m[i, k]m[k, j], {k, j, i}]; m3[i_, j_] := m3[i, j]=Sum[m[i, k]m2[k, j], {k, j, i}]; Flatten[Table[m[i, j], {i, 0, 8}, {j, 0, i}]] %Y A078122 Cf. A078121, A078123, A078124, A078125, A016142. %K A078122 nonn,tabl %O A078122 0,5 %A A078122 _Paul D. Hanna_, Nov 18 2002