This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A078137 #23 Apr 05 2025 06:32:27 %S A078137 4,8,9,12,13,16,17,18,20,21,22,24,25,26,27,28,29,30,31,32,33,34,35,36, %T A078137 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59, %U A078137 60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82 %N A078137 Numbers which can be written as sum of squares>1. %C A078137 A078134(a(n))>0. %C A078137 Numbers which can be written as a sum of squares of primes. - _Hieronymus Fischer_, Nov 11 2007 %C A078137 Equivalently, numbers which can be written as a sum of squares of 2 and 3. Proof for numbers m>=24: if m=4*(k+6), k>=0, then m=(k+6)*2^2; if m=4*(k+6)+1 than m=(k+4)*2^2+3^2; if m=4*(k+6)+2 then m=(k+2)*2^2+2*3^2; if m=4*(k+6)+3 then m=k*2^2+3*3^2. Clearly, the numbers a(n)<24 can also be written as sums of squares of 2 and 3. Explicit representation as a sum of squares of 2 and 3 for numbers m>23: m=c*2^2+d*3^2, where c:=(floor(m/4) - 2*(m mod 4))>=0 and d:=m mod 4. - _Hieronymus Fischer_, Nov 11 2007 %H A078137 <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a> %H A078137 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SquareNumber.html">Square Number</a>. %H A078137 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1). %F A078137 a(n)=n + 12 for n >= 12. - _Hieronymus Fischer_, Nov 11 2007 %t A078137 Join[{4, 8, 9, 12, 13, 16, 17, 18, 20, 21, 22}, Range[24, 82]] (* _Jean-François Alcover_, Aug 01 2018 *) %o A078137 (PARI) a(n)=if(n>11,n+12,[4,8,9,12,13,16,17,18,20,21,22][n]) \\ _Charles R Greathouse IV_, Aug 21 2011 %Y A078137 Complement of A078135. %Y A078137 Cf. A000290, A078136, A078131, A001597, A025475, A078134, A078135, A078139, A090677, A134600, A134605, A134608, A134612, A134616, A134618, A134620. %K A078137 nonn,easy %O A078137 1,1 %A A078137 _Reinhard Zumkeller_, Nov 19 2002 %E A078137 Edited by _N. J. A. Sloane_, Oct 17 2009 at the suggestion of R. J. Mathar.