This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A078140 #17 Jul 10 2017 22:50:01 %S A078140 1,3,5,9,17,30,52,90,154,262,446,758,1285,2176,3683,6230,10533,17803, %T A078140 30085,50831,85873,145063,245037,413891,699082,1180761,1994293, %U A078140 3368302,5688920,9608292,16227841,27407792,46289925,78180465,132041227 %N A078140 Convolutory inverse of signed lower Wythoff sequence. %C A078140 Suppose that r is a real number in the interval [3/2, 5/3). Let C(r) = (c(k)) be the sequence of coefficients in the Maclaurin series for 1/(Sum_{k>=0} floor((k+1)*r))(-x)^k). It appears that c(k) > 0 for all k >= 0. Indeed, it appears that C(r) is strictly increasing and that the limit L(r) of c(k+1)/c(k) as k -> oo exists. Following is a guide for selected numbers r. %C A078140 ** r ** C(r) L(r) %C A078140 sqrt(7/3) A188135 A288238 %C A078140 Pi/2 A288229 A288239 %C A078140 sqrt(5/2) A288230 A288240 %C A078140 4^(1/3) A288231 A288241 %C A078140 (1 + sqrt(5))/2 A078140 A281112 %C A078140 3e/5 A288232 A288242 %C A078140 sqrt(8/3) A288233 A288935 %C A078140 -1 + sqrt(7) A288234 A289003 %C A078140 sqrt(e) A288235 A289005 %C A078140 -4/5 + sqrt(6) A288236 A289032 %C A078140 sqrt(11/4) A288237 A289033 %H A078140 Clark Kimberling, <a href="/A078140/b078140.txt">Table of n, a(n) for n = 1..1000</a> %H A078140 Clark Kimberling, <a href="http://mathoverflow.net/questions/259821/another-question-about-the-golden-ratio-and-other-numbers"> Another question about the golden ratio and other numbers</a>, MathOverflow, Jan 17 2017. %F A078140 a(n) = d*[w(n)*a(1)-w(n-1)*a(2)+...+d*w(2)*a(n-1)], where d=(-1)^n, with a(1)=1 and w=floor(n*tau), tau=(1+sqrt(5))/2. %e A078140 a(5) = 17 = -[w(5)*a(1)-w(4)*a(2)+w(3)*a(3)-w(2)*a(4)] = -8*1+6*3-4*5+3*9. (a(1),a(2),...,a(n))(*)(w(1),-w(2),w(3),...,-d*w(n)) = (1,0,0,...,0), where (*) denotes convolution, w = lower Wythoff sequence, A000201. %t A078140 CoefficientList[Series[1/Sum[Floor[GoldenRatio*(k + 1)] (-x)^k, {k, 0, 50}], %t A078140 {x, 0,50}], x] (* _Clark Kimberling_, Dec 12 2016 *) %Y A078140 Cf. A000201, A077607, A281112, A279676. %K A078140 nonn %O A078140 1,2 %A A078140 _Clark Kimberling_, Nov 23 2002 %E A078140 Comments added by _Clark Kimberling_, Jul 10 2017