cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078144 Starts for strings of at least five consecutive nonsquarefree numbers.

This page as a plain text file.
%I A078144 #28 Jan 11 2025 17:39:54
%S A078144 844,1680,2888,3624,5046,10924,14748,15848,17404,19940,22020,22021,
%T A078144 22624,23272,24647,24648,25772,29348,30248,30923,30924,33172,36700,
%U A078144 37248,38724,39444,40472,45372,47672,47673,47724,47824,48372,49488
%N A078144 Starts for strings of at least five consecutive nonsquarefree numbers.
%H A078144 Amiram Eldar, <a href="/A078144/b078144.txt">Table of n, a(n) for n = 1..10000</a>
%F A078144 Equals { A070284[k] | A070284[k+1] = A070284[k]+1 }. - _M. F. Hasler_, Feb 01 2016
%F A078144 a(n) = A188296(n) - 2. - _Amiram Eldar_, Feb 09 2021
%e A078144 Squares dividing 5-string=844+j, j=0,..,4 are as follows:4,169,9,121,16 resp. Each term initiates an arithmetic progression with suitable large difference. Such progressions are constructible by solving suitable linear Diophantine equations. E.g., quintet = {m*k+3689649, m*k+3689650, m*k+3689651, m*k+3689652, m*k+3689653} = {9*(592900*k+409961), 25*(213444*k+147586), 49*(108900*k+75299), 4*(1334025*k+922413), 121*(44100*k+30493)}; m=2310*2310=A002110(5)^2=A061742(5)=5336100.
%t A078144 s5[x_] := Total[Table[Abs[MoebiusMu[x + j]], {j, 0, 4}]] == 0; Select[Range[50000], s5]
%t A078144 Flatten[Position[Partition[SquareFreeQ/@Range[60000],5,1],_?(Union[#] == {False}&),{1},Heads->False]] (* _Harvey P. Dale_, May 24 2014 *)
%t A078144 SequencePosition[Table[If[SquareFreeQ[n],0,1],{n,50000}],{1,1,1,1,1}][[All,1]] (* _Harvey P. Dale_, Oct 16 2022 *)
%Y A078144 Cf. A045882 (min terms), A068781 (2-chains), A070258 (3-chains), A070284 (4-chains), A078144 (5-chains), A049535 (6-chains), A077647 (8-chains), A078143 (9-chains), A188296.
%K A078144 nonn
%O A078144 1,1
%A A078144 _Labos Elemer_, Nov 25 2002