cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078266 Integer part of the arithmetic mean of all the distinct numbers formed by permuting the digits of concatenation of numbers from 1 to n.

This page as a plain text file.
%I A078266 #24 Jan 07 2019 02:15:24
%S A078266 1,16,222,2777,33333,388888,4444444,49999999,555555555,46464646464,
%T A078266 4102564102563,377777777777777,35947712418300653,3508771929824561403,
%U A078266 349206349206349206348,35265700483091787439613,3599999999999999999999999
%N A078266 Integer part of the arithmetic mean of all the distinct numbers formed by permuting the digits of concatenation of numbers from 1 to n.
%C A078266 For n < 10 there are n! distinct numbers.
%H A078266 Chai Wah Wu, <a href="/A078266/b078266.txt">Table of n, a(n) for n = 1..369</a>
%F A078266 a(n) = A007953(A007908(n))*(10^A055642(A007908(n))-1)/(9*A055642(A007908(n))). - _Chai Wah Wu_, Jan 06 2019
%e A078266 a(3) = floor((123 + 132 + 213 + 231 + 312 + 321)/6) = 222;
%e A078266 a(4) = floor((1234 + 1243 + 1324 + 1342 + 1423 + 1432 + ... + 4312 + 4321)/24) = 66660/24 = 2777.
%p A078266 a:= proc(n) local s, t, l;
%p A078266       s:= cat("", seq(i, i=1..n)); t:= length(s);
%p A078266       l:= (p-> seq(coeff(p, x, i), i=0..9))(add(x^parse(s[i]), i=1..t));
%p A078266       floor((10^t-1)/9*add(i*l[i+1], i=1..9)/t)
%p A078266     end:
%p A078266 seq(a(n), n=1..20);  # _Alois P. Heinz_, Jan 05 2019
%o A078266 (PARI) { a(n) = c=vector(10); for(i=1,n, s=eval(Vec(Str(i))); for(j=1,#s,c[s[j]+1]++); ); l=sum(j=1,10,c[j]); (10^l-1)/9*sum(j=1,10,(j-1)*c[j])\l } \\ _Max Alekseyev_
%o A078266 (Python)
%o A078266 def A078266(n):
%o A078266     s = ''.join(str(i) for i in range(1,n+1))
%o A078266     return sum(int(d) for d in s)*(10**len(s)-1)//(9*len(s)) # _Chai Wah Wu_, Jan 04 2019
%Y A078266 Cf. A071268, A078265.
%K A078266 base,nonn
%O A078266 1,2
%A A078266 _Amarnath Murthy_, Nov 24 2002
%E A078266 More terms from _Max Alekseyev_, Jan 24 2012