cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078304 Generalized Fermat numbers: 7^(2^n)+1, n >= 0.

This page as a plain text file.
%I A078304 #33 Feb 16 2025 08:32:48
%S A078304 8,50,2402,5764802,33232930569602,1104427674243920646305299202,
%T A078304 1219760487635835700138573862562971820755615294131238402
%N A078304 Generalized Fermat numbers: 7^(2^n)+1, n >= 0.
%C A078304 From _Daniel Forgues_, Jun 19 2011: (Start)
%C A078304 Generalized Fermat numbers F_n(a) := F_n(a,1) = a^(2^n)+1, a >= 2, n >= 0, can't be prime if a is odd (as is the case for the current sequence) (Ribenboim (1996)).
%C A078304 All factors of generalized Fermat numbers F_n(a,b) := a^(2^n)+b^(2^n), a >= 2, n >= 0, are of the form k*2^m+1, k >= 1, m >=0 (Riesel (1994, 1998)). (This only expresses that the factors are odd, which means that it only applies to odd generalized Fermat numbers.) (End)
%H A078304 Vincenzo Librandi, <a href="/A078304/b078304.txt">Table of n, a(n) for n = 0..12</a>
%H A078304 Anders Björn and Hans Riesel, <a href="http://www.jstor.org/stable/2584996">Factors of Generalized Fermat Numbers</a>, Mathematics of Computation, Vol. 67, No. 221, Jan., 1998, pp. 441-446.
%H A078304 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GeneralizedFermatNumber.html">Generalized Fermat Number</a>.
%H A078304 OEIS Wiki, <a href="/wiki/Generalized_Fermat_numbers">Generalized Fermat numbers</a>.
%F A078304 a(0) = 8, a(n)=(a(n-1)-1)^2+1, n >= 1.
%F A078304 a(n) = 6*a(n-1)*a(n-2)*...*a(1)*a(0) + 2, n >= 0, where for n = 0, we get 6*(empty product, i.e., 1)+ 2 = 8 = a(0). This means that the GCD of any pair of terms is 2. - _Daniel Forgues_, Jun 20 2011
%F A078304 Sum_{n>=0} 2^n/a(n) = 1/6. - _Amiram Eldar_, Oct 03 2022
%e A078304 a(0) = 7^1+1 = 8 = 6*(1)+2 = 6*(empty product)+2.
%e A078304 a(1) = 7^2+1 = 50 = 6*(8)+2.
%e A078304 a(2) = 7^4+1 = 2402 = 6*(8*50)+2.
%e A078304 a(3) = 7^8+1 = 5764802 = 6*(8*50*2402)+2.
%e A078304 a(4) = 7^16+1 = 33232930569602 = 6*(8*50*2402*5764802)+2.
%e A078304 a(5) = 7^32+1 = 1104427674243920646305299202 = 6*(8*50*2402*5764802*33232930569602)+2.
%t A078304 Table[7^2^n + 1, {n, 0, 6}] (* _Arkadiusz Wesolowski_, Nov 02 2012 *)
%o A078304 (Magma) [7^(2^n) + 1: n in [0..8]]; // _Vincenzo Librandi_, Jun 20 2011
%Y A078304 Cf. A000215 (Fermat numbers: 2^(2^n)+1, n >= 0).
%Y A078304 Cf. A059919, A199591, A078303, A152581, A080176, A199592, A152585.
%K A078304 nonn,easy
%O A078304 0,1
%A A078304 _Eric W. Weisstein_, Nov 21 2002
%E A078304 Edited by _Daniel Forgues_, Jun 19 2011