This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A078306 #40 Aug 07 2022 07:01:55 %S A078306 1,3,10,11,26,30,50,43,91,78,122,110,170,150,260,171,290,273,362,286, %T A078306 500,366,530,430,651,510,820,550,842,780,962,683,1220,870,1300,1001, %U A078306 1370,1086,1700,1118,1682,1500,1850,1342,2366,1590,2210,1710,2451,1953 %N A078306 a(n) = Sum_{d divides n} (-1)^(n/d+1)*d^2. %H A078306 Seiichi Manyama, <a href="/A078306/b078306.txt">Table of n, a(n) for n = 1..10000</a> %H A078306 J. W. L. Glaisher, <a href="https://books.google.com/books?id=bLs9AQAAMAAJ&pg=RA1-PA1">On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares</a>, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8). %H A078306 Heekyoung Hahn, <a href="http://arxiv.org/abs/1507.04426">Convolution sums of some functions on divisors</a>, arXiv:1507.04426 [math.NT], 2015. %H A078306 <a href="/index/Ge#Glaisher">Index entries for sequences mentioned by Glaisher</a> %F A078306 G.f.: Sum_{n >= 1} n^2*x^n/(1+x^n). %F A078306 Multiplicative with a(2^e) = (2*4^e+1)/3, a(p^e) = (p^(2*e+2)-1)/(p^2-1), p > 2. %F A078306 L.g.f.: -log(Product_{ k>0 } 1/(x^k+1)^k) = Sum_{ n>0 } (a(n)/n)*x^n. - _Benedict W. J. Irwin_, Jul 05 2016 %F A078306 G.f.: Sum_{n >= 1} (-1)^(n+1) * x^n*(1 + x^n)/(1 - x^n)^3. - _Peter Bala_, Jan 14 2021 %F A078306 From _Vaclav Kotesovec_, Aug 07 2022: (Start) %F A078306 Dirichlet g.f.: zeta(s) * zeta(s-2) * (1 - 2^(1-s)). %F A078306 Sum_{k=1..n} a(k) ~ zeta(3) * n^3 / 4. (End) %t A078306 a[n_] := Sum[(-1)^(n/d+1)*d^2, {d, Divisors[n]}]; Array[a, 50] (* _Jean-François Alcover_, Apr 17 2014 *) %t A078306 Table[CoefficientList[Series[-Log[Product[1/(x^k + 1)^k, {k, 1, 90}]], {x, 0, 80}], x][[n + 1]] n, {n, 1, 80}] (* _Benedict W. J. Irwin_, Jul 05 2016 *) %o A078306 (PARI) a(n) = sumdiv(n, d, (-1)^(n/d+1)*d^2); \\ _Michel Marcus_, Jul 06 2016 %o A078306 (Python) %o A078306 from sympy import divisors %o A078306 print([sum((-1)**(n//d + 1)*d**2 for d in divisors(n)) for n in range(1, 51)]) # _Indranil Ghosh_, Apr 05 2017 %Y A078306 Cf. A000593, A064027, A026007, A001157. %Y A078306 Glaisher's zeta'_i (i=0..12): A048272, A000593, A078306, A078307, A284900, A284926, A284927, A321552, A321553, A321554, A321555, A321556, A321557 %K A078306 mult,nonn,easy %O A078306 1,2 %A A078306 _Vladeta Jovovic_, Nov 22 2002