This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A078346 #20 Aug 03 2025 02:20:51 %S A078346 1,1,2,4,7,11,17,24,34,46,62,79,104,130,163,201,249,298,363,429,513, %T A078346 605,714,824,966,1112,1284,1468,1687,1907,2181,2456,2779,3120,3510, %U A078346 3910,4394,4879,5430,6008,6677,7347,8139,8932,9836,10788,11850,12913 %N A078346 a(1) = 1; a(n) = Sum_{k=1..n-1} a(floor((n-1)/k)). %F A078346 For k>1, a(prime(k)+1)=2*a(prime(k))-a(prime(k)-1)+1. - _Benoit Cloitre_, Aug 29 2004 %F A078346 G.f. A(x) satisfies: A(x) = x + (x/(1 - x)) * Sum_{k>=1} (1 - x^k) * A(x^k). - _Ilya Gutkovskiy_, Aug 11 2021 %o A078346 (Python) %o A078346 from functools import lru_cache %o A078346 @lru_cache(maxsize=None) %o A078346 def A078346(n): %o A078346 if n == 1: %o A078346 return 1 %o A078346 c, j, k1 = n, 1, n-1 %o A078346 while k1 > 1: %o A078346 j2 = (n-1)//k1 + 1 %o A078346 c += (j2-j)*A078346(k1) %o A078346 j, k1 = j2, (n-1)//j2 %o A078346 return c-j # _Chai Wah Wu_, Apr 29 2025 %Y A078346 Partial sums of A320224. %K A078346 nonn %O A078346 1,3 %A A078346 _Benoit Cloitre_, Nov 22 2002