This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A078374 #20 Oct 22 2020 06:49:41 %S A078374 1,0,1,1,2,2,4,4,6,7,11,10,17,17,23,26,37,36,53,53,70,77,103,103,139, %T A078374 147,184,199,255,260,339,358,435,474,578,611,759,810,963,1045,1259, %U A078374 1331,1609,1726,2015,2200,2589,2762,3259,3509,4058,4416,5119,5488,6364,6882 %N A078374 Number of partitions of n into distinct and relatively prime parts. %C A078374 The Heinz numbers of these partitions are given by A302796, which is the intersection of A005117 (strict) and A289509 (relatively prime). - _Gus Wiseman_, Oct 18 2020 %H A078374 Seiichi Manyama, <a href="/A078374/b078374.txt">Table of n, a(n) for n = 1..10000</a> %H A078374 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %F A078374 Moebius transform of A000009. %F A078374 G.f.: 1 + Sum_{n>=1} a(n)*x^n/(1 - x^n) = Product_{n>=1} (1 + x^n). - _Ilya Gutkovskiy_, Apr 26 2017 %e A078374 From _Gus Wiseman_, Oct 18 2020: (Start) %e A078374 The a(1) = 1 through a(13) = 17 partitions (empty column indicated by dot, A = 10, B = 11, C = 12): %e A078374 1 . 21 31 32 51 43 53 54 73 65 75 76 %e A078374 41 321 52 71 72 91 74 B1 85 %e A078374 61 431 81 532 83 543 94 %e A078374 421 521 432 541 92 651 A3 %e A078374 531 631 A1 732 B2 %e A078374 621 721 542 741 C1 %e A078374 4321 632 831 643 %e A078374 641 921 652 %e A078374 731 5421 742 %e A078374 821 6321 751 %e A078374 5321 832 %e A078374 841 %e A078374 931 %e A078374 A21 %e A078374 5431 %e A078374 6421 %e A078374 7321 %e A078374 (End) %t A078374 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&GCD@@#==1&]],{n,15}] (* _Gus Wiseman_, Oct 18 2020 *) %Y A078374 Cf. A047966. %Y A078374 A000837 is the not necessarily strict version. %Y A078374 A302796 gives the Heinz numbers of these partitions. %Y A078374 A305713 is the pairwise coprime instead of relatively prime version. %Y A078374 A332004 is the ordered version. %Y A078374 A337452 is the case without 1's. %Y A078374 A000009 counts strict partitions. %Y A078374 A000740 counts relatively prime compositions. %Y A078374 Cf. A007359, A101268, A289508, A289509, A291166, A298748, A337451, A337485, A337451, A337561, A337563. %K A078374 nonn %O A078374 1,5 %A A078374 _Vladeta Jovovic_, Dec 24 2002