cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078392 Sum of GCD's of parts in all partitions of n.

This page as a plain text file.
%I A078392 #21 May 07 2021 00:55:02
%S A078392 1,3,5,9,11,20,21,35,42,61,66,112,113,168,210,279,313,461,508,719,852,
%T A078392 1088,1277,1756,2006,2573,3106,3937,4593,5958,6872,8676,10305,12655,
%U A078392 15009,18664,21673,26559,31447,38217,44623,54386,63303,76379,89696,106879
%N A078392 Sum of GCD's of parts in all partitions of n.
%C A078392 Equals row sums of triangle A168534. - _Gary W. Adamson_, Nov 28 2009
%H A078392 Alois P. Heinz, <a href="/A078392/b078392.txt">Table of n, a(n) for n = 1..1000</a>
%F A078392 a(n) = Sum_{d|n} d * A000837(n/d).
%F A078392 a(n) = Sum_{d|n} phi(n/d)*numbpart(d) = Sum_{d|n} A000010(n/d)*A000041(d). - _Vladeta Jovovic_, May 08 2003
%F A078392 From _Richard L. Ollerton_, May 06 2021: (Start)
%F A078392 a(n) = Sum_{k=1..n} A000041(gcd(n,k)).
%F A078392 a(n) = Sum_{k=1..n} A000041(n/gcd(n,k))*A000010(gcd(n,k))/A000010(n/gcd(n,k)). (End)
%e A078392 Partitions of 4 are 1+1+1+1, 1+1+2, 2+2, 1+3, 4, the corresponding GCD's of parts are 1,1,2,1,4 and their sum is a(4) = 9.
%p A078392 with(numtheory): with(combinat):
%p A078392 a:= n-> add(phi(n/d)*numbpart(d), d=divisors(n)):
%p A078392 seq(a(n), n=1..50);  # _Alois P. Heinz_, Apr 02 2015
%t A078392 a[n_] := Sum[EulerPhi[n/d]*PartitionsP[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 50}] (* _Jean-François Alcover_, Jul 01 2015, after _Alois P. Heinz_ *)
%Y A078392 Cf. A000010, A000041, A168534, A181844 (the same for LCM), A319301.
%K A078392 nonn
%O A078392 1,2
%A A078392 _Vladeta Jovovic_, Dec 24 2002