A274410 Numbers n such that the Collatz iterations for n and n + 1 have the same length (A078417) but do not meet a certain condition. (See comments.)
3067, 4088, 4089, 5742, 6135, 7151, 8179, 8263, 8614, 9979, 10904, 10905, 11016, 11017, 11485, 12922, 13304, 13305, 14303, 14538, 14539, 14689, 15303, 15313, 16527, 16891, 17229, 19384, 19385, 19386, 19585, 19959, 20417, 21482, 21791, 21808, 21811, 22035
Offset: 1
Keywords
Examples
The Collatz iterations for 3067 and 3068 yield 1384 on the 27th iteration in both cases. For 3067, the three previous terms are (1844, 922, 461), with parities (0, 0, 1). For 3068, the three previous terms are (11072, 5536, 2768), with parities (0, 0, 0). Thus the condition fails to hold and 3067 is in the sequence.
Links
- Eric M. Schmidt, Table of n, a(n) for n = 1..10000
- Marcus Elia and Amanda Tucker, Consecutive Integers and the Collatz Conjecture, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 15, Paper A54, 2015. (But beware of errors.)
Programs
-
Sage
def collatz(n) : return 3*n+1 if n%2 else n//2 def isa(n) : parityn = paritynp1 = [-1]*3 valn = n valnp1 = n+1 while valn != valnp1 : if valn==1 or valnp1==1 : return False parityn = [parityn[1], parityn[2], valn%2] paritynp1 = [paritynp1[1], paritynp1[2], valnp1%2] valn = collatz(valn) valnp1 = collatz(valnp1) return [parityn, paritynp1] not in [ [[1,0,0],[0,0,1]], [[0,0,1],[1,0,0]] ]
Comments