This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A078424 #19 Jun 29 2025 19:56:56 %S A078424 3,2,1,1,7,6,4,1,1,1,8,8,5,2,0,9,8,3,2,1,3,6,8,9,5,2,8,3,8,8,5,4,7,8, %T A078424 5,4,9,9,9,7,0,8,9,4,9,3,5,4,2,2,8,3,3,4,8,5,8,4,3,2,6,6,0,2,0,4,6,2, %U A078424 5,4,8,8,3,7,6,3,4,8,8,7,3,3,1,4,2,3,3,7,5,6,9,2,5,5,6,6,0,6,3,2,2,8,8,4,1 %N A078424 Mix digits of Pi, e and phi. %F A078424 { A000796(n), A001113(n), A001622(n), ..., n=1, 2, ... }. %e A078424 3.211764111885209832136895283885478549997... %t A078424 p = RealDigits[Pi, 10, 40][[1]]; e = RealDigits[E, 10, 40][[1]]; g = RealDigits[GoldenRatio, 10, 40][[1]]; a = {}; Do[a = Append[a, p[[n]]]; a = Append[a, e[[n]]]; a = Append[a, g[[n]]], {n, 1, 40}]; a %t A078424 Riffle[Riffle[RealDigits[Pi,10,100][[1]],RealDigits[E,10,100][[1]]], RealDigits[GoldenRatio,10,100][[1]],3] (* _Harvey P. Dale_, Jun 20 2011 *) %o A078424 (PARI) piephi(n) = { default(realprecision,1000); p = Pi/10; e = exp(1)/10; phe = (sqrt(5)+1)/20; default(realprecision,28); forstep(x=1,n,2, d = p*10; d1=floor(d); p = frac(d); d2 = e*10; d3 = floor(d2); e = frac(d2); d4 = phe*10; d5 = floor(d4); phe = frac(d4); print1(d1" "d3" "d5" "); ); } %Y A078424 Cf. A000796, A001113, A001622, A001355, A076790. %K A078424 base,cons,easy,less,nonn %O A078424 1,1 %A A078424 _Cino Hilliard_, Dec 29 2002 %E A078424 Offset changed by _Alois P. Heinz_, Aug 22 2024