This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A078430 #38 Apr 28 2023 08:20:45 %S A078430 1,3,5,10,9,15,13,28,33,27,21,50,25,39,45,88,33,99,37,90,65,63,45,140, %T A078430 145,75,153,130,57,135,61,240,105,99,117,330,73,111,125,252,81,195,85, %U A078430 210,297,135,93,440,385,435,165,250,105,459,189,364,185,171,117,450,121 %N A078430 Sum of gcd(k^2,n) for 1 <= k <= n. %C A078430 a(n) is the number of non-congruent solutions to x^2*y = 0 mod n. - Yuval Dekel (dekelyuval(AT)hotmail.com), Oct 17 2003 %C A078430 Row sums of triangle A245717. - _Reinhard Zumkeller_, Jul 30 2014 %H A078430 Amiram Eldar, <a href="/A078430/b078430.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Reinhard Zumkeller) %H A078430 E. Krätzel, W. G. Nowak, and L. Tóth, <a href="https://eudml.org/doc/269485">On certain arithmetic functions involving the greatest common divisor</a>, Cent. Eur. J. Math., 10 (2012), 761-774. %H A078430 M. Kühleitner and W. G. Nowak, <a href="http://arxiv.org/abs/1204.1146">On a question of A. Schinzel: Omega estimates for a special type of arithmetic functions </a>, arXiv: 1204.1146 [math.NT], 2012. %H A078430 László Tóth, <a href="http://www.seminariomatematico.polito.it/rendiconti/69-1/97.pdf">Menon's identity and arithmetical sums representing functions of several variables</a>, Rend. Sem. Mat. Univ. Politec. Torino, 69 (2011), 97-110. %F A078430 a(n) is multiplicative. G.f. for a(p^n), p a prime, is given by (1+(p-1)*x-p^2*x^2)/(1-p*x)/(1-p^3*x^2). %F A078430 a(n) = n*Sum_{d|n} phi(d)*N(d)/d, where phi is Euler's totient function A000010 and N(n) is sequence A000188. - _Laszlo Toth_, Apr 15 2012 %F A078430 Multiplicative with a(p^e) = p^(3*e/2) + p^(3*e/2-1) - p^(e-1) if e is even, and 2*p^((3*e-1)/2) - p^(e-1) if e is odd. - _Amiram Eldar_, Apr 28 2023 %t A078430 Table[Sum[GCD[k^2,n],{k,n}],{n,70}] (* _Harvey P. Dale_, Sep 29 2014 *) %t A078430 f[p_, e_] := If[EvenQ[e], p^(3*e/2) + p^(3*e/2 - 1), 2*p^((3*e - 1)/2)] - p^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Apr 28 2023 *) %o A078430 (Haskell) %o A078430 a078430 = sum . a245717_row -- _Reinhard Zumkeller_, Jul 30 2014 %o A078430 (PARI) a(n) = sum(k=1,n, gcd(k^2, n)); \\ _Michel Marcus_, Aug 03 2016 %Y A078430 Cf. A018804, A069097, A069193. %Y A078430 Cf. A245717. %K A078430 mult,nonn %O A078430 1,2 %A A078430 _Vladeta Jovovic_, Dec 30 2002