cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078437 Decimal expansion of sum of alternating series of reciprocals of primes.

This page as a plain text file.
%I A078437 #63 May 06 2025 17:12:10
%S A078437 2,6,9,6,0,6,3,5,1,9,7,1,6,7
%N A078437 Decimal expansion of sum of alternating series of reciprocals of primes.
%C A078437 Verified and extended by _Chris K. Caldwell_ and _Jud McCranie_.
%C A078437 Next two terms are most likely 4 and 5. - _Robert Price_, Sep 13 2011
%C A078437 From _Jon E. Schoenfield_, Nov 25 2018: (Start)
%C A078437 Let f(k) be the k-th partial sum of the alternating series, i.e., f(k) = Sum_{j=1..k} ((-1)^(j+1))/prime(j). At large values of k, successive first differences f(k) - f(k-1) = ((-1)^(k+1))/prime(k) are alternatingly positive and negative and are nearly the same in absolute value, so f(k) is alternatingly above (for odd k) or below (for even k) the value of the much smoother function g(k) = (f(k-1) + f(k))/2 (a two-point moving average of the function f()).
%C A078437 Additionally, since the first differences f(k) - f(k-1) are decreasing in absolute value, g(k) will be less than both g(k-1) and g(k+1) for odd k, and greater than both for even k; i.e., g(), although much smoother than f(), is also alternatingly below or above the value of the still smoother function h(k) = (g(k-1) + g(k))/2 = ((f(k-2) + f(k-1))/2 + (f(k-1) + f(k))/2)/2 = (f(k-2) + 2*f(k-1) + f(k))/4. Evaluated at k = 2^m for m = 1, 2, 3, ..., the values of h(k) converge fairly quickly toward the limit of the alternating series:
%C A078437                          h(k) =
%C A078437            k  (f(k-2) + 2*f(k-1) + f(k))/4
%C A078437   ==========  ============================
%C A078437            2     0.29166666666666666...
%C A078437            4     0.28095238095238095...
%C A078437            8     0.26875529011751921...
%C A078437           16     0.27058892362329746...
%C A078437           32     0.27009944617052797...
%C A078437           64     0.26963971020080367...
%C A078437          128     0.26959147218377685...
%C A078437          256     0.26959653902072193...
%C A078437          512     0.26960402179695026...
%C A078437         1024     0.26960568606633210...
%C A078437         2048     0.26960649673621509...
%C A078437         4096     0.26960645080540929...
%C A078437         8192     0.26960627432070023...
%C A078437        16384     0.26960633643086948...
%C A078437        32768     0.26960634835658329...
%C A078437        65536     0.26960635083481533...
%C A078437       131072     0.26960635144743392...
%C A078437       262144     0.26960635199009778...
%C A078437       524288     0.26960635199971603...
%C A078437      1048576     0.26960635195886861...
%C A078437      2097152     0.26960635197214933...
%C A078437      4194304     0.26960635197019215...
%C A078437      8388608     0.26960635197186919...
%C A078437     16777216     0.26960635197171149...
%C A078437     33554432     0.26960635197146884...
%C A078437     67108864     0.26960635197167534...
%C A078437    134217728     0.26960635197167145...
%C A078437    268435456     0.26960635197166927...
%C A078437    536870912     0.26960635197167200...
%C A078437   1073741824     0.26960635197167416...
%C A078437   2147483648     0.26960635197167454...
%C A078437   4294967296     0.26960635197167462... (End)
%C A078437 The above mentioned average functions can also be written g(k) = f(k) + (-1)^k/prime(k)/2 and h(k) = g(k) + (-1)^k (1/prime(k) - 1/prime(k-1))/4 = f(k) + (-1)^k (3/prime(k) - 1/prime(k-1))/4. - _M. F. Hasler_, Feb 20 2024
%D A078437 S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, pp. 94-98.
%H A078437 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeSums.html">Prime Sums</a>
%H A078437 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeZetaFunction.html">Prime Zeta Function</a>
%H A078437 Wikipedia, <a href="http://en.wikipedia.org/wiki/Prime_zeta_function">Prime Zeta Function</a>
%F A078437 c = lim_{n -> oo} A024530(n)/A002110(n). - _M. F. Hasler_, Feb 20 2024
%e A078437 1/2 - 1/3 + 1/5 - 1/7 + 1/11 - 1/13 + ... = 0.26960635197167...
%t A078437 s = NSum[ p=Prime[k//Round]; (-1)^k/p, {k, 1, Infinity}, WorkingPrecision -> 30, NSumTerms -> 5*10^7, Method -> "AlternatingSigns"]; RealDigits[s, 10, 14] // First (* _Jean-François Alcover_, Sep 02 2015 *)
%o A078437 (PARI) L=2^N=1; h=List([1/4, 1/6 + S=.5-1/o=3]); forprime(p=o+1,oo, S+=(-1)^L/p; L--|| print([L=2^N++, p, S, listput(h, S+(3/p-1/o)/4)]); o=p) \\ in PARI version > 2.13 listput() may not return the element so one must add +h[#h]
%o A078437 A(x,n=#x)=(x[n]*x[n-2]-x[n-1]^2)/(x[n]+x[n-2]-2*x[n-1]) \\ This is Aitken's Delta-square extrapolation for the last 3 elements of the list x. One can check that the extrapolation is useful for the sequence of raw partial sums (f(2^k)), but not for the smooth/average sequence (h(2^k)). - _M. F. Hasler_, Feb 20 2024
%Y A078437 Cf. A242301, A242302, A242303, A242304.
%Y A078437 Cf. A024530 (numerator of partial sums), A002110 (denominators: primorials).
%K A078437 cons,hard,more,nonn
%O A078437 0,1
%A A078437 _G. L. Honaker, Jr._, Dec 31 2002
%E A078437 Values of a(11)-a(14) = 7,1,6,7 from _Robert Price_, Sep 13 2011