This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A078462 #16 Nov 11 2018 10:32:23 %S A078462 1,2,2,3,3,3,5,6,7,7,7,7,7,9,9,10,12,13,13,13,13,13,15,15,16,16,16,18, %T A078462 18,18,20,21,21,23,23,24,24,24,24,24,26,26,26,26,26,28,30,30,33,34,34, %U A078462 34,34,34,34,36,36,36,36,36,36,38,40,41,41,41,41,43,43,43,45,46,48,48 %N A078462 Partial sums of A035185. %H A078462 M. Baake and R. V. Moody, <a href="http://arXiv.org/abs/math.MG/9904028">Similarity submodules and root systems in four dimensions</a>, Canad. J. Math. 51 (1999), 1258-1276. %F A078462 a(n) = Sum_{k=1..n} A035185(k); %F A078462 a(n) is asymptotic to c*n where c = log(1+sqrt(2))/sqrt(2) = 0.62322524014023051339402008... %F A078462 a(n) = Sum_{k=1..n} K(k,2)*floor(n/k) where K(x,y) is the Kronecker symbol. - _Benoit Cloitre_, Oct 31 2009 %t A078462 Table[DivisorSum[n, KroneckerSymbol[2, #]&], {n, 1, 100}] // Accumulate (* _Jean-François Alcover_, Nov 11 2018 *) %o A078462 (PARI) a(n)=sum(k=1,n,kronecker(k,2)*floor(n/k)) \\ _Benoit Cloitre_, Oct 31 2009 %Y A078462 Cf. A035185, A078428. %K A078462 nonn %O A078462 1,2 %A A078462 _Benoit Cloitre_, Dec 31 2002 %E A078462 Corrected by _T. D. Noe_, Nov 02 2006