cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078491 a(n) = lcm(1..Catalan(n)).

This page as a plain text file.
%I A078491 #19 Nov 21 2023 18:13:22
%S A078491 1,1,2,60,360360,219060189739591200,
%T A078491 1749342047920660916901891145781670987072592322134428432000
%N A078491 a(n) = lcm(1..Catalan(n)).
%C A078491 For every cycle count LCM-sequence Axxxxxx in A073204 it holds that Axxxxxx(n) divides a(n). And this also applies to similar LCM-sequences induced by other "Catalan bijections", cf. A060113.
%C A078491 The next term (a(7)) has 184 digits. - _Harvey P. Dale_, Nov 21 2023
%H A078491 Muniru A Asiru, <a href="/A078491/b078491.txt">Table of n, a(n) for n = 0..7</a>
%H A078491 <a href="/index/Lc#lcm">Index entries for sequences related to lcm's</a>
%F A078491 a(n) = A003418(A000108(n)).
%t A078491 Table[LCM@@Range[CatalanNumber[n]],{n,0,7}] (* _Harvey P. Dale_, Nov 21 2023 *)
%o A078491 (PARI) a(n) = lcm([1..binomial(2*n,n)/(n+1)]); \\ _Michel Marcus_, Mar 21 2018
%o A078491 (GAP) List([0..7],n->Lcm([1..Binomial(2*n,n)/(n+1)])); # _Muniru A Asiru_, Mar 21 2018
%Y A078491 Composition of the sequences A000108 and A003418.
%K A078491 nonn
%O A078491 0,3
%A A078491 _Antti Karttunen_, Jan 04 2003