This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A078529 #20 Mar 15 2024 11:55:44 %S A078529 3,1,0,0,0,0,0,1,2,3,4,6,9,10,12,15,18,21,24,28,32,36,40,45,51,55,60, %T A078529 66,72,78,84,91,98,105,112,120,129,136,144,153,162,171,180,190,200, %U A078529 210,220,231,243,253,264,276,288,300,312,325,338,351,364,378,393,406,420 %N A078529 Exponent sequence for a bilinear recursive sequence. %H A078529 <a href="/index/Tu#2wis">Index entries for two-way infinite sequences</a> %H A078529 <a href="/index/Rec#order_14">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,0,0,0,0,0,0,0,0,1,-2,1). %F A078529 G.f.: (3 - 5*x + x^2 + x^3 + x^7 + x^11 - 2*x^12 + 3*x^13) / ((1 - x)^2 * (1 - x^12)). %F A078529 a(8-n) - a(n) = -1 if n == 0 (mod 12), +1 if n == 8 (mod 12), 0 otherwise. %e A078529 3 + x + x^7 + 2*x^8 + 3*x^9 + 4*x^10 + 6*x^11 + 9*x^12 + 10*x^13 + ... %t A078529 LinearRecurrence[{2,-1,0,0,0,0,0,0,0,0,0,1,-2,1},{3,1,0,0,0,0,0,1,2,3,4,6,9,10},70] (* _Harvey P. Dale_, May 27 2017 *) %o A078529 (PARI) {a(n) = (n%12==0) + (n-4)^2\8} %Y A078529 Cf. A001972, A078530. %K A078529 nonn,easy %O A078529 0,1 %A A078529 _Michael Somos_, Nov 25 2002