cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078540 Least non-balanced x (i.e., not in A020492) such that sigma(p(n),x)/phi(x) is an integer, where p(n) = n-th prime.

Original entry on oeis.org

22, 38, 46, 295, 235, 749, 3687, 6128, 1415, 4254, 10451, 8351, 334, 4511, 3398, 1286, 148870, 11015, 35519, 10239, 14072, 76088, 5991, 718, 11654, 30761, 7431, 20993, 700654, 22169, 5095, 4198, 27415, 26744, 14318, 48368, 180878, 16991, 173123, 4166, 5033, 7246
Offset: 1

Views

Author

Labos Elemer, Dec 02 2002

Keywords

Examples

			n=6: prime(6)=13, cases of sigma(13,x)/phi(x) is an integer are listed in A015771: 1, 2, 3, 6, 12, etc.; the first term which is non-balanced, i.e., not in A020492, is a(6) = 749 = A020492(31); a(29) = 700854 and a(45) = 510759 are remarkably large.
		

Crossrefs

Programs

  • Mathematica
    Table[fl=1; Do[s1=DivisorSigma[1, n]/EulerPhi[n]; sk=DivisorSigma[Prime[k], n]/EulerPhi[n]; If[ !IntegerQ[s1]&&IntegerQ[sk]&&Equal[fl, 1], Print[{n, Prime[k]}]; fl=0], {n, 1, 1000000}], {k, 1, 100}]
  • PARI
    lista(nmax) = {my(ps = primes(nmax), pmax = ps[#ps], v = vector(pmax), c = 0, k = 2, f, e, p); while(c < nmax, f = factor(k); e = eulerphi(f); if(sigma(f) % e > 0, for(i = 1, nmax, p = ps[i]; if(!(sigma(f, p) % e) && v[p] == 0, c++; v[p] = k))); k++); for(i = 1, pmax, if(v[i] > 0, print1(v[i], ", ")));} \\ Amiram Eldar, Aug 29 2024

Formula

a(n) = min{x; A000203(x) mod A000005(x) = 0 but sigma(A000040(n), x) mod phi(x) is not 0}.

Extensions

a(18) corrected and more terms added by Amiram Eldar, Aug 29 2024