This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A078560 #20 May 11 2018 17:51:50 %S A078560 1,1,1,1,5,5,10,1,11,11,11,11,55,5,115,1495,8671,43355,476905, %T A078560 16691675,16691675,43398355,254190365,559218803,559218803,13980470075, %U A078560 1075420775,56997301075,1036314565,1036314565,1036314565,6123676975 %N A078560 Denominator of Product_{i=1..n} (p_i+1)/(p_i-1). Numerators are in A078559. %C A078560 According to Koninck (2009), a(8) is the largest value of this sequence known to be 1 (meaning that the product is an integer). [_Alonso del Arte_, Aug 23 2011] %D A078560 R. K. Guy, Unsolved Problems in Number Theory, B48. %D A078560 J.-M. De Koninck, Those Fascinating Numbers, Amer. Math. Soc., 2009, p. 6. %H A078560 Robert Israel, <a href="/A078560/b078560.txt">Table of n, a(n) for n = 1..1703</a> %H A078560 F. Smarandache, <a href="http://www.gallup.unm.edu/~smarandache/OPNS.pdf">Only Problems, Not Solutions!</a>. %F A078560 a(n) = A005867(n)/A078558(n). %p A078560 Q:= 1: p:= 1: %p A078560 for n from 1 to 100 do %p A078560 p:= nextprime(p); %p A078560 Q:= Q * (p+1)/(p-1); %p A078560 A[n]:= denom(Q); %p A078560 od: seq(A[i], i=1..100); # %t A078560 Denominator[Table[Product[(Prime[i] + 1)/(Prime[i] - 1), {i, n}], {n, 30}]] (* _Alonso del Arte_, Aug 23 2011 *) %o A078560 (PARI) a(n) = denominator(prod(i=1, n, (prime(i)+1)/(prime(i)-1))); \\ _Michel Marcus_, May 11 2018 %Y A078560 Cf. A000203, A002110, A000005, A005867, A054640, A020492, A078558, A078559. %K A078560 nonn,frac %O A078560 1,5 %A A078560 _Labos Elemer_, Dec 06 2002 %E A078560 Improved definition from _Franklin T. Adams-Watters_, Dec 02 2005