cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078597 Primes of the form p*(p+4)+2 where p and p+4 are primes.

Original entry on oeis.org

23, 79, 223, 439, 4759, 53359, 77839, 95479, 99223, 159199, 194479, 239119, 378223, 416023, 680623, 2223079, 2595319, 2873023, 3186223, 3515623, 4003999, 5022079, 6456679, 6859159, 8732023, 9235519, 9492559, 10017223, 10595023
Offset: 1

Views

Author

Cino Hilliard, Dec 08 2002

Keywords

Comments

More generally, if a and b are even numbers, let Seq(a,b) be the sequence of primes of the form p*(p+a)+b where p and p+a are primes. Seq(a,b) is finite if either a^2+b == 2 (mod 3) or a^2-4*b is a square. Is it infinite in all other cases?

Crossrefs

Except for the term 23, this is a subsequence of A048880. A051779 is Seq(2, 2). A049002 is Seq(0, -2). A045637 is Seq(0, 4).

Programs

  • Mathematica
    Select[ #(#+4)+2&/@Select[Prime/@Range[500], PrimeQ[ #+4]&], PrimeQ]
  • PARI
    prodtp(n1,n2,a,b)=local(f,x); f=0; forprime(x=n1,n2,if(isprime(x+a),f=x*(x+a)+b; if(isprime(f),print(x" "x+a" "f" "); ); ); ); \ Computes that part of Seq(a,b) with n1<=p<=n2.

Extensions

Edited by Dean Hickerson, Dec 10 2002