cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078604 Largest prime factor of the integer formed by truncating the decimal expansion of Pi to n places.

This page as a plain text file.
%I A078604 #37 Mar 14 2025 17:10:51
%S A078604 3,31,157,349,103,314159,392699,8263,7853,9786893,28954771,
%T A078604 157079632679,68246533,4304347,67649047,1002742628021,1170899,
%U A078604 990371647,14523877,1186001,1023100457,451661057,1492315939,381315143078063,950007203269
%N A078604 Largest prime factor of the integer formed by truncating the decimal expansion of Pi to n places.
%H A078604 Tyler Busby, <a href="/A078604/b078604.txt">Table of n, a(n) for n = 0..200</a> (terms 0..100 from Ryan Moore, terms 101..169 from Robert G. Wilson)
%H A078604 I. O. Angell, and H. J. Godwin, <a href="http://dx.doi.org/10.1090/S0025-5718-1977-0427213-2">On Truncatable Primes</a> Math. Comput. 31, 265-267, 1977.
%H A078604 Hisanori Mishima, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/de_pi000.htm"> Decimal expansions of π (n = 0 to 100)</a>
%H A078604 Hisanori Mishima, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/de_pi100.htm"> Decimal expansions of π (n = 101 to 200)</a>
%H A078604 Hisanori Mishima, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/de_pi200.htm"> Decimal expansions of π (n = 201 to 250)</a>
%H A078604 <a href="/index/Tri#tprime">Index entries for sequences related to truncatable primes</a>
%F A078604 a(n) = A006530(A011545(n)). - _Michel Marcus_, Dec 28 2013
%F A078604 a(n) = A011545(n) iff n is a term in A060421. - _Robert G. Wilson v_, May 30 2015
%e A078604 a(3) = 157 since 314 = 2*157.
%t A078604 f[n_] := FactorInteger[ IntegerPart[ Pi*10^(n - 1)]][[-1, 1]]; Array[f, 23] (* _Robert G. Wilson v_, May 30 2015 *)
%o A078604 (PARI) a(n) = vecmax(factor(floor(Pi*10^n))[, 1]); \\ _Michel Marcus_, Dec 28 2013
%Y A078604 Cf. A011545, A006530.
%Y A078604 Cf. A089281.
%K A078604 nonn,base
%O A078604 0,1
%A A078604 _Jason Earls_, Dec 09 2002
%E A078604 More terms from _Ryan Moore_, Dec 28 2013