cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078607 Least positive integer x such that 2*x^n > (x+1)^n.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 9, 10, 12, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 40, 42, 43, 45, 46, 48, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 76, 78, 79, 81, 82, 84, 85, 87, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102
Offset: 0

Views

Author

Jon Perry, Dec 09 2002

Keywords

Comments

Also, integer for which E(s) = s^n - Sum_{0 < k < s} k^n is maximal. It appears that a(n) + 2 is the least integer for which E(s) < 0. - M. F. Hasler, May 08 2020

Examples

			a(2) = 3 as 2^2 = 4, 3^2 = 9 and 4^2 = 16.
For n = 777451915729368, a(n) = 1121626023352384 = ceiling(n log 2), where n*log(2) = 1121626023352383.5 - 2.13*10^-17 and 2*floor(n log 2)^n / floor(1 + n log 2)^n = 1 - 3.2*10^-32. - _M. F. Hasler_, Nov 02 2013
a(2) is given by floor(1/(1-1/sqrt(2))). [From former A230748.]
		

Crossrefs

Cf. A224996 (the largest integer x that satisfies 2*x^n <= (x+1)^n).
Cf. A078608, A078609. Equals A110882(n)-1 for n > 0.
Cf. A332097 (maximum of E(s), cf comments), also related to this: A332101 (least k such that k^n <= sum of all smaller n-th powers), A030052 (least k such that k^n = sum of distinct n-th powers), A332065 (all k such that k^n is a sum of distinct n-th powers).

Programs

  • Mathematica
    Table[SelectFirst[Range@ 120, 2 #^n > (# + 1)^n &], {n, 0, 71}] (* Michael De Vlieger, May 01 2016, Version 10 *)
  • PARI
    for (n=2,50, x=2; while (2*x^n<=((x+1)^n),x++); print1(x","))
    
  • PARI
    a(n)=1\(1-1/2^(1/n)) \\ Charles R Greathouse IV, Oct 31 2013
    
  • PARI
    apply( A078607(n)=ceil(1/if(n>1,sqrtn(2,n)-1,!n+n/2)), [0..80]) \\ M. F. Hasler, May 08 2020

Formula

a(n) = ceiling(1/(2^(1/n)-1)) for n > 1. (For n = 1 resp. 0 this gives the integer 1 resp. infinity as argument of ceiling.) [Edited by M. F. Hasler, May 08 2020]
For most n, a(n) is the nearest integer to n/log(2), but there are exceptions, including n=777451915729368.
Following formulae merged in from former A230748, M. F. Hasler, May 14 2020:
a(n) = floor(1/(1-1/2^(1/n))).
a(n) = n/log(2) + O(1). - Charles R Greathouse IV, Oct 31 2013
a(n) = floor(1/(1-x)) with x^n = 1/2: f(n) = 1/(2^(1/n)-1) is never an integer for n > 1, whence floor(f(n)+1) = ceiling(f(n)) = a(n). - M. F. Hasler, Nov 02 2013, and Gabriel Conant, May 01 2016

Extensions

Edited by Dean Hickerson, Dec 17 2002
Initial terms a(0) = 1 and a(1) = 2 added by M. F. Hasler, Nov 02 2013