cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078630 Numerators of coefficients of asymptotic expansion of probability p(n) (see A002816) in powers of 1/n.

This page as a plain text file.
%I A078630 #10 Apr 10 2012 14:26:11
%S A078630 1,-4,0,20,58,796,7858,40324,140194,2444744,40680494,-7117319032,
%T A078630 -149539443124,-223750776484,-4960419494993024,-46146161037854692,
%U A078630 -689434674121075448,-132496988938839119444,-9686633414582239854958,-442788087926096759821484
%N A078630 Numerators of coefficients of asymptotic expansion of probability p(n) (see A002816) in powers of 1/n.
%H A078630 Vaclav Kotesovec, <a href="/A078630/b078630.txt">Table of n, a(n) for n = 0..50</a>
%H A078630 B. Aspvall and F. M. Liang, <a href="http://www-db.stanford.edu/TR/cstr8x.html">The dinner table problem</a>, Technical Report CS-TR-80-829, Computer Science Department, Stanford, California, 1980.
%e A078630 p(n) = exp(-2)*(1 - 4/n + 20/(3n^3) + 58/(3n^4) + ...).
%t A078630 t = 15;
%t A078630 y[n_]:=(1+Sum[Subscript[p,k]/n^k,{k,1,t}]);
%t A078630 mul=1;start=9; If[t>9,mul=n^(t-9);start=t];
%t A078630 w=Apart[Expand[mul*Simplify[
%t A078630 y[n]*n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n-6)*(n-7)*(n-8)*(n-9)*(n-10)
%t A078630 -((3*n-30)*y[n-11]
%t A078630 +(6*n-45)*y[n-10]*(n-10)
%t A078630 +(5*n+18)*y[n-9]*(n-9)*(n-10)
%t A078630 -(8*n-139)*y[n-8]*(n-8)*(n-9)*(n-10)
%t A078630 -(26*n-204)*y[n-7]*(n-7)*(n-8)*(n-9)*(n-10)
%t A078630 -(4*n-30)*y[n-6]*(n-6)*(n-7)*(n-8)*(n-9)*(n-10)
%t A078630 +(26*n-148)*y[n-5]*(n-5)*(n-6)*(n-7)*(n-8)*(n-9)*(n-10)
%t A078630 +(8*n-74)*y[n-4]*(n-4)*(n-5)*(n-6)*(n-7)*(n-8)*(n-9)*(n-10)
%t A078630 -(9*n-18)*y[n-3]*(n-3)*(n-4)*(n-5)*(n-6)*(n-7)*(n-8)*(n-9)*(n-10)
%t A078630 -(2*n-15)*y[n-2]*(n-2)*(n-3)*(n-4)*(n-5)*(n-6)*(n-7)*(n-8)*(n-9)*(n-10)
%t A078630 +(n+2)*y[n-1]*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n-6)*(n-7)*(n-8)*(n-9)*(n-10))],n],n];
%t A078630 sol=Solve[Table[Coefficient[w,n,j]==0,{j,start,start-t+1,-1}]];
%t A078630 asympt=y[n]/.sol[[1]];
%t A078630 Table[Numerator[Coefficient[asympt,n,-j]],{j,0,t}] (* _Vaclav Kotesovec_, Apr 06 2012 *)
%Y A078630 Cf. A078631, A089222.
%K A078630 sign
%O A078630 0,2
%A A078630 _N. J. A. Sloane_, Dec 13 2002
%E A078630 Terms a(5)-a(19) from Vaclav Kotesovec, Apr 06 2012 (terms a(5)-a(7) were wrong, see A089222 for more information)