cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078631 Denominators of coefficients of asymptotic expansion of probability p(n) (see A002816) in powers of 1/n.

This page as a plain text file.
%I A078631 #10 Apr 10 2012 14:26:42
%S A078631 1,1,1,3,3,15,45,63,63,405,14175,51975,93555,15795,42567525,49116375,
%T A078631 91216125,2170943775,19538493975,109185701625,3093594879375,
%U A078631 10257709336875,428772250281375,281764621613475,158210081654625,160789593855515625
%N A078631 Denominators of coefficients of asymptotic expansion of probability p(n) (see A002816) in powers of 1/n.
%H A078631 Vaclav Kotesovec, <a href="/A078631/b078631.txt">Table of n, a(n) for n = 0..50</a>
%H A078631 B. Aspvall and F. M. Liang, <a href="http://www-db.stanford.edu/TR/cstr8x.html">The dinner table problem</a>, Technical Report CS-TR-80-829, Computer Science Department, Stanford, California, 1980.
%e A078631 p(n) = exp(-2)*(1 - 4/n + 20/(3n^3) + 58/(3n^4) + ...).
%t A078631 t = 15;
%t A078631 y[n_]:=(1+Sum[Subscript[p,k]/n^k,{k,1,t}]);
%t A078631 mul=1;start=9; If[t>9,mul=n^(t-9);start=t];
%t A078631 w=Apart[Expand[mul*Simplify[
%t A078631 y[n]*n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n-6)*(n-7)*(n-8)*(n-9)*(n-10)
%t A078631 -((3*n-30)*y[n-11]
%t A078631 +(6*n-45)*y[n-10]*(n-10)
%t A078631 +(5*n+18)*y[n-9]*(n-9)*(n-10)
%t A078631 -(8*n-139)*y[n-8]*(n-8)*(n-9)*(n-10)
%t A078631 -(26*n-204)*y[n-7]*(n-7)*(n-8)*(n-9)*(n-10)
%t A078631 -(4*n-30)*y[n-6]*(n-6)*(n-7)*(n-8)*(n-9)*(n-10)
%t A078631 +(26*n-148)*y[n-5]*(n-5)*(n-6)*(n-7)*(n-8)*(n-9)*(n-10)
%t A078631 +(8*n-74)*y[n-4]*(n-4)*(n-5)*(n-6)*(n-7)*(n-8)*(n-9)*(n-10)
%t A078631 -(9*n-18)*y[n-3]*(n-3)*(n-4)*(n-5)*(n-6)*(n-7)*(n-8)*(n-9)*(n-10)
%t A078631 -(2*n-15)*y[n-2]*(n-2)*(n-3)*(n-4)*(n-5)*(n-6)*(n-7)*(n-8)*(n-9)*(n-10)
%t A078631 +(n+2)*y[n-1]*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n-6)*(n-7)*(n-8)*(n-9)*(n-10))],n],n];
%t A078631 sol=Solve[Table[Coefficient[w,n,j]==0,{j,start,start-t+1,-1}]];
%t A078631 asympt=y[n]/.sol[[1]];
%t A078631 Table[Denominator[Coefficient[asympt,n,-j]],{j,0,t}] (* _Vaclav Kotesovec_, Apr 06 2012 *)
%Y A078631 Cf. A078630, A089222.
%K A078631 nonn
%O A078631 0,4
%A A078631 _N. J. A. Sloane_, Dec 13 2002
%E A078631 Terms a(8)-a(25) from Vaclav Kotesovec, Apr 06 2012