cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078632 Number of geometric subsequences of [1,...,n] with integral successive-term ratio and length > 1.

Original entry on oeis.org

0, 1, 2, 5, 6, 9, 10, 15, 18, 21, 22, 28, 29, 32, 35, 43, 44, 50, 51, 57, 60, 63, 64, 73, 76, 79, 84, 90, 91, 98, 99, 109, 112, 115, 118, 129, 130, 133, 136, 145, 146, 153, 154, 160, 166, 169, 170, 183, 186, 192, 195, 201, 202, 211, 214, 223, 226, 229, 230, 242
Offset: 1

Views

Author

Robert E. Sawyer (rs.1(AT)mindspring.com)

Keywords

Comments

The number of geometric subsequences of [1,...,n] with integral successive-term ratio r and length k is floor(n/r^(k-1))(n > 0, r > 1, k > 0).

Examples

			a(2): [1,2]; a(3): [1,2],[1,3]; a(4): [1,2],[1,3],[1,4],[2,4],[1,2,4].
		

Crossrefs

Cf. A078651.
Row sums of triangle A090623.
Partial sums of A309891.

Programs

  • Maple
    g := (n, b) -> local i; add(iquo(n, b^i), i = 1..floor(log(n, b))):
    a := n -> local b; add(g(n, b), b = 2..n):
    seq(a(n), n = 1..60);  # Peter Luschny, Apr 03 2025
  • Mathematica
    Accumulate[Table[Total[IntegerExponent[n, Rest[Divisors[n]]]], {n, 100}]] (* Paolo Xausa, Aug 27 2025 *)
  • PARI
    A078632(n) = {my(s=0, k=2); while(k<=n, s+=(n - sumdigits(n, k))/(k-1); k=k+1); s} \\ Zhuorui He, Aug 26 2025

Formula

a(n) = Sum_{r > 1, j > 0} floor(n/r^j).