cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078651 Number of increasing geometric-progression subsequences of [1,...,n] with integral successive-term ratio and length >= 1.

Original entry on oeis.org

1, 3, 5, 9, 11, 15, 17, 23, 27, 31, 33, 40, 42, 46, 50, 59, 61, 68, 70, 77, 81, 85, 87, 97, 101, 105, 111, 118, 120, 128, 130, 141, 145, 149, 153, 165, 167, 171, 175, 185, 187, 195, 197, 204, 211, 215, 217, 231, 235, 242, 246, 253, 255, 265, 269, 279, 283, 287
Offset: 1

Views

Author

Robert E. Sawyer (rs.1(AT)mindspring.com), Jan 08 2003

Keywords

Comments

The number of geometric-progression subsequences of [1,...,n] with integral successive-term ratio r and length k is floor(n/r^(k-1))(n > 0, r > 1, k > 0).

Examples

			a(1): [1]; a(2): [1],[2],[1,2]; a(3): [1],[2],[3],[1,2],[1,3].
		

Crossrefs

a(n) = n + A078632(n).
See A366471 for rational ratios.
See A078567 for APs.

Programs

  • Maple
    g := (n, b) -> local i; add(iquo(n, b^i), i = 1..floor(log(n, b))):
    a := n -> local b; n + add(g(n, b), b = 2..n):
    seq(a(n), n = 1..58);  # Peter Luschny, Apr 03 2025
  • Mathematica
    Accumulate[1 + Table[Total[IntegerExponent[n, Rest[Divisors[n]]]], {n, 100}]] (* Paolo Xausa, Aug 27 2025 *)

Formula

a(n) = n + Sum_{r > 1, j > 0} floor(n/r^j).