This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A078772 #13 Oct 20 2017 18:51:06 %S A078772 1,1,1,1,1,1,1,1,1,2,2,1,1,1,1,2,2,1,1,1,1,2,2,1,1,2,2,4,2,1,1,1,1,2, %T A078772 2,4,2,1,1,2,2,1,1,1,1,2,2,1,1,2,2,4,2,1,1,2,2,4,2,1,1,1,1,2,2,4,2,1, %U A078772 1,2,2,1,1,1,1,2,2,4,2,1,1,2,2,1,1,2,2,4,2,1,1,2,2,4,2,6,4,1,1,2 %N A078772 a(n) = phi(n-p) where p is largest prime < n, a(1) = a(2) = 1 by convention. %C A078772 This sequence is a block of concatenations of vectors of lengths of prime gaps with elements phi(i) for i = 1 to that prime gap. Those vectors are (1), (1, 1), (1, 1, 2, 2), (1, 1, 2, 2, 4, 2), ... - _David A. Corneth_, Oct 20 2017 %H A078772 Antti Karttunen, <a href="/A078772/b078772.txt">Table of n, a(n) for n = 1..16384</a> %F A078772 For n >= 3, a(n) = A000010(A049711(n)). - _Antti Karttunen_, Oct 20 2017 %e A078772 a(10) = phi(10-7) = phi(3) = 2. %o A078772 (PARI) for (n=1,100, print1(eulerphi(n-precprime(n-1))",")) %o A078772 (PARI) first(n) = {n = nextprime(n); my(res = vector(n), phimap = Map(), q = 2, v); res[1] = res[2] = 1; forprime(p=3, n, if(!mapisdefined(phimap, p - q), mapput(phimap, p - q, vector(p - q, i, eulerphi(i)))); v = mapget(phimap, p-q); for(i = q + 1, p, res[i] = v[i - q]); q = p); res} \\ _David A. Corneth_, Oct 20 2017 %Y A078772 Cf. A000010, A001223, A049711. %K A078772 nonn %O A078772 1,10 %A A078772 _Jon Perry_, Jan 09 2003 %E A078772 Description clarified by _Antti Karttunen_, Oct 20 2017