This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A078823 #13 Jul 31 2022 07:47:28 %S A078823 0,1,3,4,7,8,12,11,15,16,18,22,28,30,33,26,31,32,34,38,42,39,50,52,60, %T A078823 62,66,68,77,80,78,57,63,64,66,70,70,76,82,84,90,92,81,96,110,108,118, %U A078823 114,124,126,130,132,142,140,144,153,165,168,174,177,182,186,171,120 %N A078823 Sum of distinct binary numbers contained as substrings in binary representation of n. %H A078823 Reinhard Zumkeller, <a href="/A078823/b078823.txt">Table of n, a(n) for n = 0..10000</a> %F A078823 a(2^k-1) = 2^(k+1)-(k+2); a(2^k) = 2^(k+1)-1; %F A078823 for k>0: a(2^k+1) = 2^(k+1); %F A078823 a(2^k-1) = A078825(2^k-1), a(2^k) = A078825(2^k). %e A078823 n=10: sum of the A078822(10)=5 binary numbers: a(10) = '0'+'1'+'10'+'101'+'1010' = 0+1+2+5+10 = 18. %o A078823 (Haskell) %o A078823 a078823 = sum . a119709_row -- _Reinhard Zumkeller_, Aug 14 2013 %o A078823 (Python) %o A078823 def a(n): return sum(set(((((2<<l)-1)<<i)&n)>>i for i in range(n.bit_length()) for l in range(n.bit_length()-i))) %o A078823 print([a(n) for n in range(64)]) # _Michael S. Branicky_, Jul 28 2022 %Y A078823 Cf. A078822, A078825, A007088, A144623, A144624. %K A078823 nonn,base %O A078823 0,3 %A A078823 _Reinhard Zumkeller_, Dec 08 2002