This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A078826 #11 Jul 17 2015 05:58:02 %S A078826 0,0,1,1,1,2,2,2,1,1,2,4,2,4,3,2,1,2,1,3,2,2,4,6,2,2,4,5,3,6,3,3,1,1, %T A078826 2,3,1,3,3,4,2,3,2,5,4,5,6,7,2,3,2,3,4,5,5,7,3,3,6,8,3,7,4,3,1,1,1,3, %U A078826 2,3,3,5,1,2,3,5,3,5,4,5,2,3,3,6,2,2,5,7,4,5,5,5,6,8,7,8,2,3,3,3,2,5,3,5,4 %N A078826 Number of distinct primes contained as binary substrings in binary representation of n. %C A078826 A143792(n) <= a(n) for n > 0. - _Reinhard Zumkeller_, Sep 08 2008 %C A078826 For n > 1: number of primes in n-th row of A165416, lengths in n-th row of A225243. - _Reinhard Zumkeller_, Jul 17 2015, Aug 14 2013 %H A078826 Reinhard Zumkeller, <a href="/A078826/b078826.txt">Table of n, a(n) for n = 0..10000</a> %e A078826 n=7 -> '111' contains 2 different binary substrings which are primes: '11' (11b or b11) and '111' itself, therefore a(7)=2. %t A078826 a[n_] := (bits = IntegerDigits[n, 2]; lg = Length[bits]; Reap[Do[If[PrimeQ[p = FromDigits[bits[[i ;; j]], 2]], Sow[p]], {i, 1, lg-1}, {j, i+1, lg}]][[2, 1]] // Union // Length); a[0] = a[1] = 0; Table[a[n], {n, 0, 104}] (* _Jean-François Alcover_, May 23 2013 *) %o A078826 (Haskell) %o A078826 a078826 n | n <= 1 = 0 %o A078826 | otherwise = length $ a225243_row n %o A078826 -- _Reinhard Zumkeller_, Aug 14 2013 %Y A078826 Cf. A004676, A035232, A078827, A078822, A007088, A001221. %Y A078826 Cf. A143792, A165416, A225243. %K A078826 nonn,base %O A078826 0,6 %A A078826 _Reinhard Zumkeller_, Dec 08 2002