cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078829 Numbers having exactly one prime contained as binary substring in binary representation of n.

This page as a plain text file.
%I A078829 #11 Jul 17 2015 05:54:55
%S A078829 2,3,4,8,9,16,18,32,33,36,64,65,66,72,128,129,130,132,144,256,258,260,
%T A078829 264,265,288,289,512,513,516,520,528,530,576,578,1024,1025,1026,1032,
%U A078829 1040,1056,1057,1060,1152,1156,2048,2049,2050,2052,2064,2080,2112,2114
%N A078829 Numbers having exactly one prime contained as binary substring in binary representation of n.
%C A078829 A078826(a(n)) = 1; A078830 is a subsequence;
%C A078829 for k>2 also floor(a(k)/2) belongs to the sequence.
%H A078829 Reinhard Zumkeller, <a href="/A078829/b078829.txt">Table of n, a(n) for n = 1..120</a>
%e A078829 n=18 -> '10010' contains only 1 distinct binary substring which is prime: '10' (10bbb or bbb10), therefore 18 is a term.
%t A078829 primeCount[n_] := (bits = IntegerDigits[n, 2]; lg = Length[bits]; Reap[Do[If[PrimeQ[p = FromDigits[bits[[i ;; j]], 2]], Sow[p]], {i, 1, lg-1}, {j, i+1, lg}]][[2, 1]] // Union // Length); primeCount[1] = 0; Select[Range[3000], primeCount[#] == 1 &] (* _Jean-François Alcover_, May 23 2013 *)
%o A078829 (Haskell)
%o A078829 a078829 n = a078829_list !! (n-1)
%o A078829 a078829_list = filter ((== 1) . a078826) [1..]
%o A078829 -- _Reinhard Zumkeller_, Jul 17 2015
%Y A078829 Cf. A078826, A078830, A007088.
%Y A078829  Cf. A225243.
%K A078829 nonn,base,nice
%O A078829 1,1
%A A078829 _Reinhard Zumkeller_, Dec 08 2002