cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078880 The sequence starting with 2 that equals its own run length sequence.

Original entry on oeis.org

2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1
Offset: 1

Views

Author

Clark Kimberling, Dec 11 2002

Keywords

Comments

It is an unsolved problem to show that the density of 1's is equal to 1/2.
The sequence can be generated by starting with 22 and applying the block-substitution rules 22 -> 2211, 21 -> 221, 12 -> 211, 11 -> 21. (Lagarias)

Examples

			Start with 2, which generates 22 (so that the first run length is 2); then 22 generates 2211 (so that the first two run lengths are 2 and 2); then 2211 generates 221121 and so on.
		

References

  • M. S. Keane, Ergodic theory and subshifts of finite type, Chap. 2 of T. Bedford et al., eds., Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, Oxford, 1991, esp. p. 50.

Crossrefs

See A000002, this sequence prepended with 1, for properties, formulas, references, links, programs, etc.

Programs

  • Mathematica
    seed = {2, 1}; w = {}; i = 1; Do[w = Join[w, Array[seed[[Mod[i - 1, Length[seed]] + 1]] &, If[i > Length[w], seed, w][[i]]]]; i++, {n, 70}]; w (* Ivan Neretin, Apr 02 2015 *)

Formula

a(n) = k(n+1), where k=A000002, the Kolakoski sequence.