cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078937 Square of lower triangular matrix of A056857 (successive equalities in set partitions of n).

This page as a plain text file.
%I A078937 #17 Mar 28 2024 11:58:57
%S A078937 1,2,1,6,4,1,22,18,6,1,94,88,36,8,1,454,470,220,60,10,1,2430,2724,
%T A078937 1410,440,90,12,1,14214,17010,9534,3290,770,126,14,1,89918,113712,
%U A078937 68040,25424,6580,1232,168,16,1,610182,809262,511704,204120,57204,11844,1848,216,18,1
%N A078937 Square of lower triangular matrix of A056857 (successive equalities in set partitions of n).
%C A078937 First column gives A001861 (values of Bell polynomials); row sums gives A035009 (STIRLING transform of powers of 2);
%C A078937 Square of the matrix exp(P)/exp(1) given in A011971. - _Gottfried Helms_, Apr 08 2007. Base matrix in A011971 and in A056857, second power in this entry, third power in A078938, fourth power in A078939
%C A078937 Riordan array [exp(2*exp(x)-2),x], whose production matrix has e.g.f. exp(x*t)(t+2*exp(x)). [_Paul Barry_, Nov 26 2008]
%F A078937 PE=exp(matpascal(5))/exp(1); A = PE^2; a(n)=A[n,column] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^2; a(n)=A[n,1] - _Gottfried Helms_, Apr 08 2007
%F A078937 Exponential function of 2*Pascal's triangle (taken as a lower triangular matrix) divided by e^2: [A078937] = (1/e^2)*exp(2*[A007318]) = [A056857]^2.
%e A078937 [0] 1;
%e A078937 [1] 2, 1;
%e A078937 [2] 6, 4, 1;
%e A078937 [3] 22, 18, 6, 1;
%e A078937 [4] 94, 88, 36, 8, 1;
%e A078937 [5] 454, 470, 220, 60, 10, 1;
%e A078937 [6] 2430, 2724, 1410, 440, 90, 12, 1;
%e A078937 [7] 14214, 17010, 9534, 3290, 770, 126, 14, 1;
%e A078937 [8] 89918, 113712, 68040, 25424, 6580, 1232, 168, 16, 1;
%p A078937 # Computes triangle as a matrix M(dim, p).
%p A078937 # A023531 (p=0), A056857 (p=1), this sequence (p=2), A078938 (p=3), ...
%p A078937 with(LinearAlgebra): M := (n, p) -> local j,k; MatrixPower(subs(exp(1) = 1,
%p A078937 MatrixExponential(MatrixExponential(Matrix(n, n, [seq(seq(`if`(j = k + 1, j, 0),
%p A078937 k = 0..n-1), j = 0..n-1)])))), p): M(8, 2);  # _Peter Luschny_, Mar 28 2024
%o A078937 (PARI) k=9; m=matpascal(k)-matid(k+1); pe=matid(k+1)+sum(j=1,k,m^j/j!); A=pe^2; A /* _Gottfried Helms_, Apr 08 2007; amended by _Georg Fischer_ Mar 28 2024 */
%Y A078937 Cf. A056857, A001861, A035009.
%Y A078937 Cf. A078938, A078944, A078945, A000110.
%Y A078937 Cf. A078937, A078938, A129323, A129324, A129325, A027710.
%Y A078937 Cf. A129327, A129328, A129329, A078944, A129331, A129332, A129333.
%K A078937 nonn,tabl
%O A078937 0,2
%A A078937 _Paul D. Hanna_, Dec 18 2002
%E A078937 Entry revised by _N. J. A. Sloane_, Apr 25 2007
%E A078937 a(38) corrected by _Georg Fischer_, Mar 28 2024