cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078938 Cube of lower triangular matrix of A056857 (successive equalities in set partitions of n).

This page as a plain text file.
%I A078938 #11 Dec 03 2012 15:54:53
%S A078938 1,3,1,12,6,1,57,36,9,1,309,228,72,12,1,1866,1545,570,120,15,1,12351,
%T A078938 11196,4635,1140,180,18,1,88563,86457,39186,10815,1995,252,21,1,
%U A078938 681870,708504,345828,104496,21630,3192,336,24,1,5597643,6136830,3188268
%N A078938 Cube of lower triangular matrix of A056857 (successive equalities in set partitions of n).
%C A078938 Cube of the matrix exp(P)/exp(1) given in A011971. - _Gottfried Helms_, Apr 08 2007. Base matrix in A011971, second power in A129321, third power in this entry, fourth power in A078939
%C A078938 First column gives A027710. Row sums give A078940.
%C A078938 Riordan array [exp(3*exp(x)-3),x], whose production matrix has e.g.f. exp(x*t)(t+3*exp(x)). [From _Paul Barry_, Nov 26 2008]
%F A078938 PE=exp(matpascal(5))/exp(1); A = PE^3; a(n)= A[ n,sequentially read ] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^3; a(n)=A[ n,sequentially read] - _Gottfried Helms_, Apr 08 2007
%F A078938 Exponential function of 3*Pascal's triangle (taken as a lower triangular matrix) divided by e^3: [A078938] = (1/e^3)*exp(3*[A007318]) = [A056857]^3.
%e A078938 Rows:
%e A078938 1,
%e A078938 3,1,
%e A078938 12,6,1,
%e A078938 57,36,9,1,
%e A078938 309,228,72,12,1,
%e A078938 1866,1545,570,120,15,1,
%e A078938 12351,11196,4635,1140,180,18,1,
%e A078938 ...
%o A078938 (PARI) m=matpascal(5)-matid(6); pe=matid(6)+m/1! + m^2/2!+m^3/3!+m^4/4!+m^5/5! ; A = pe^3 - _Gottfried Helms_, Apr 08 2007
%Y A078938 Cf. A056857, A078937, A078939, A078940, A027710.
%Y A078938 Cf. A078938, A078944, A078945, A000110.
%Y A078938 Cf. A129321, A129323, A129324, A129325, A027710.
%Y A078938 Cf. A129327, A129328, A129329, A078944, A129331, A129332, A129333.
%K A078938 nonn,tabl
%O A078938 0,2
%A A078938 _Paul D. Hanna_, Dec 18 2002
%E A078938 Entry revised by _N. J. A. Sloane_, Apr 25 2007