cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078944 First column of A078939, the fourth power of lower triangular matrix A056857.

This page as a plain text file.
%I A078944 #64 Jan 11 2025 18:43:50
%S A078944 1,4,20,116,756,5428,42356,355636,3188340,30333492,304716148,
%T A078944 3218555700,35618229364,411717043252,4957730174836,62045057731892,
%U A078944 805323357485684,10820999695801908,150271018666120564,2153476417340487476
%N A078944 First column of A078939, the fourth power of lower triangular matrix A056857.
%C A078944 Also, the number of ways of placing n labeled balls into n unlabeled (but 4-colored) boxes. Binomial transform of this sequence is A078945 and a(n+1) = 4*A078945(n). - _Paul D. Hanna_, Dec 08 2003
%C A078944 First column of PE^4, where PE is given in A011971, second power in A078937, third power in A078938, fourth power in A078939. - _Gottfried Helms_, Apr 08 2007
%C A078944 The number of ways of putting n labeled balls into a set of bags and then putting the bags into 4 labeled boxes. - _Peter Bala_, Mar 23 2013
%C A078944 Exponential self-convolution of A001861. - _Vladimir Reshetnikov_, Oct 06 2016
%H A078944 Vincenzo Librandi, <a href="/A078944/b078944.txt">Table of n, a(n) for n = 0..200</a>
%H A078944 Frank Simon, <a href="https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-101154">Algebraic Methods for Computing the Reliability of Networks</a>, Dissertation, Doctor Rerum Naturalium (Dr. rer. nat.), Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden, 2012. See Table 5.1. - From _N. J. A. Sloane_, Jan 04 2013
%F A078944 PE=exp(matpascal(5))/exp(1); A = PE^4; a(n)= A[ n,1 ] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^4; a(n)=A[ n,1]. - _Gottfried Helms_, Apr 08 2007
%F A078944 E.g.f.: exp(4*(exp(x)-1)).
%F A078944 a(n) = exp(-4)*Sum_{k>=0} 4^k*k^n/k!. - _Benoit Cloitre_, Sep 25 2003
%F A078944 G.f.: 4*(x/(1-x))*A(x/(1-x)) = A(x) - 1; four times the binomial transform equals this sequence shifted one place left. - _Paul D. Hanna_, Dec 08 2003
%F A078944 a(n) = Sum_{k = 0..n} 4^k*A048993(n, k); A048993: Stirling2 numbers. - _Philippe Deléham_, May 09 2004
%F A078944 G.f.: (G(0) - 1)/(x-1)/4 where G(k) = 1 - 4/(1-k*x)/(1-x/(x-1/G(k+1))); (recursively defined continued fraction). - _Sergei N. Gladkovskii_, Jan 16 2013
%F A078944 G.f.: T(0)/(1-4*x), where T(k) = 1 - 4*x^2*(k+1)/(4*x^2*(k+1) - (1-(k+4)*x)*(1-(k+5)*x)/T(k+1)); (continued fraction). - _Sergei N. Gladkovskii_, Oct 28 2013
%F A078944 a(n) ~ n^n * exp(n/LambertW(n/4)-4-n) / (sqrt(1+LambertW(n/4)) * LambertW(n/4)^n). - _Vaclav Kotesovec_, Mar 12 2014
%F A078944 G.f.: Sum_{j>=0} 4^j*x^j / Product_{k=1..j} (1 - k*x). - _Ilya Gutkovskiy_, Apr 07 2019
%p A078944 A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A078938 := proc(n,c) add( A078937(n,k)*A056857(k+1,c),k=0..n) ; end: A078939 := proc(n,c) add( A078938(n,k)*A056857(k+1,c),k=0..n) ; end: A078944 := proc(n) A078939(n+1,0) ; end: seq(A078944(n),n=0..25) ; # _R. J. Mathar_, May 30 2008
%p A078944 # second Maple program:
%p A078944 b:= proc(n, m) option remember; `if`(n=0, 4^m,
%p A078944       add(b(n-1, max(m, j)), j=1..m+1))
%p A078944     end:
%p A078944 a:= n-> b(n, 0):
%p A078944 seq(a(n), n=0..25);  # _Alois P. Heinz_, Aug 03 2021
%t A078944 Table[n!, {n, 0, 20}]CoefficientList[Series[E^(4E^x-4), {x, 0, 20}], x]
%t A078944 Table[BellB[n,4],{n,0,20}] (* _Vaclav Kotesovec_, Mar 12 2014 *)
%t A078944 With[{nn=20},CoefficientList[Series[Exp[4(Exp[x]-1)],{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, May 03 2022 *)
%o A078944 (Sage) expnums(20, 4) # _Zerinvary Lajos_, Jun 26 2008
%Y A078944 Cf. A000110, A001861, A027710, A056857, A078937, A078938, A078939, A078944, A078945, A129323, A129324, A129325, A129327, A129328, A129329, A129331, A129332, A129333, A144180, A144223, A144263, A189233, A221159, A221176.
%K A078944 nonn
%O A078944 0,2
%A A078944 _Paul D. Hanna_, Dec 18 2002
%E A078944 More terms from _R. J. Mathar_, May 30 2008
%E A078944 Edited by _N. J. A. Sloane_, Jul 02 2008 at the suggestion of _R. J. Mathar_