This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A078947 #16 Feb 21 2025 06:15:43 %S A078947 41,641,1091,4001,9461,26681,26711,44531,79811,103991,110921,112571, %T A078947 172421,223241,276821,289841,290021,317771,373181,381371,434921, %U A078947 450881,493121,602081,678761,788351,834131,907211,974861,1076501,1081121,1097891,1200371,1409531,1426151 %N A078947 Primes p such that the differences between the 5 consecutive primes starting with p are (2,4,6,6). %C A078947 Equivalently, primes p such that p, p+2, p+6, p+12 and p+18 are consecutive primes. %H A078947 Amiram Eldar, <a href="/A078947/b078947.txt">Table of n, a(n) for n = 1..10000</a> %F A078947 a(n) == 11 (mod 30). - _Amiram Eldar_, Feb 21 2025 %e A078947 641 is in the sequence since 641, 643 = 641 + 2, 647 = 641 + 6, 653 = 641 + 12 and 659 = 641 + 18 are consecutive primes. %t A078947 Select[Partition[Prime[Range[50000]], 5, 1], Differences[#] == {2, 4, 6, 6} &][[;;, 1]] (* _Amiram Eldar_, Feb 21 2025 *) %o A078947 (PARI) list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 2 && p3 - p2 == 4 && p4 - p3 == 6 && p5 - p4 == 6, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ _Amiram Eldar_, Feb 21 2025 %Y A078947 Subsequence of A078847. %Y A078947 Cf. A001223, A078866, A078867, A078946-A078971, A022006, A022007. %K A078947 nonn %O A078947 1,1 %A A078947 _Labos Elemer_, Dec 19 2002 %E A078947 Edited by _Dean Hickerson_, Dec 20 2002