This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A078950 #15 Feb 21 2025 06:17:22 %S A078950 149,599,27059,31319,42179,65699,75209,85829,87539,92219,135599, %T A078950 170759,205949,221069,249419,274829,278609,280589,287849,302579, %U A078950 307259,308309,350429,355499,398339,406499,416399,422549,541529,566549,573479,585839,603899,609599,637709 %N A078950 Primes p such that the differences between the 5 consecutive primes starting with p are (2,6,6,4). %C A078950 Equivalently, primes p such that p, p+2, p+8, p+14 and p+18 are consecutive primes. %H A078950 Amiram Eldar, <a href="/A078950/b078950.txt">Table of n, a(n) for n = 1..10000</a> %F A078950 a(n) == 29 (mod 30). - _Amiram Eldar_, Feb 21 2025 %e A078950 149 is in the sequence since 149, 151 = 149 + 2, 157 = 149 + 8, 163 = 149 + 14 and 167 = 149 + 18 are consecutive primes. %t A078950 Select[Partition[Prime[Range[50000]], 5, 1], Differences[#] == {2, 6, 6, 4} &][[;;, 1]] (* _Amiram Eldar_, Feb 21 2025 *) %o A078950 (PARI) list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 2 && p3 - p2 == 6 && p4 - p3 == 6 && p5 - p4 == 4, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ _Amiram Eldar_, Feb 21 2025 %Y A078950 Subsequence of A078849. - _R. J. Mathar_, May 06 2017 %Y A078950 Cf. A001223, A078866, A078867, A078946-A078971, A022006, A022007. %K A078950 nonn %O A078950 1,1 %A A078950 _Labos Elemer_, Dec 19 2002 %E A078950 Edited by _Dean Hickerson_, Dec 20 2002